REFERENCES
Abah, J., V, W. O., B, A. M., M, A. U., and S,
A. O. (2015). A machine learning approach
to anomaly-based detection on Android platforms.
https://arxiv.org/abs/1512.04122.
Afonso, V. M., de Amorim, M. F., Gr
´
egio, A. R. A., Jun-
quera, G. B., and de Geus, P. L. (2015). Identi-
fying Android malware using dynamically obtained
features. Journal of Computer Virology and Hacking
Techniques, 11(1):9–17.
Androguard (2018). Androguard: Github repository. https:
//github.com/androguard/androguard.
Android Statistics (2017). Android statistics marketers
need to know. http://mediakix.com/2017/08/android-
statistics-facts-mobile-usage/.
Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., and
Rieck, K. (2014). DREBIN: effective and explai-
nable detection of android malware in your pocket.
In Proceedings of the 2014 Network and Distribu-
ted System Security Symposium, NDSS 2014. The In-
ternet Society. http://wp.internetsociety.org/ndss/wp-
content/uploads/sites/25/2017/09/11 3 1.pdf.
Aung, Z. and Zaw, W. (2013). Permission-based Android
malware detection. International Journal of Scientific
& Technology Research, 2(3).
Bennett, K. P. and Campbell, C. (2000). Support vector ma-
chines: Hype or hallelujah? SIGKDD Explorations,
2(2):1–13.
Breiman, L. and Cutler, A. (2001). Random
forests
TM
. https://www.stat.berkeley.edu/
∼
breiman/
RandomForests/cc home.htm.
Damodaran, A., Troia, F. D., Visaggio, C. A., Austin, T. H.,
and Stamp, M. (2017). A comparison of static, dyna-
mic, and hybrid analysis for malware detection. Jour-
nal of Computer Virology and Hacking Techniques,
13(1):1–12.
Dimja
˘
sevi
´
c, M., Atzeni, S., Ugrina, I., and Rakamari
´
c,
Z. (2015). Evaluation of android malware de-
tection based on system calls. Technical Report
UUCS-15-003, School of Computing, University of
Utah. http://www.cs.utah.edu/docs/techreports/2015/
pdf/UUCS-15-003.pdf.
Enck, W., Gilbert, P., Chun, B.-G., Cox, L. P., Jung, J., Mc-
Daniel, P., and Sheth, A. N. (2010). TaintDroid: An
information-flow tracking system for realtime privacy
monitoring on smartphones. In Proceedings of the
9th USENIX Conference on Operating Systems De-
sign and Implementation, OSDI’10, pages 393–407.
USENIX Association.
Feng, Y., Anand, S., Dillig, I., and Aiken, A. (2014).
Apposcopy: Semantics-based detection of Android
malware through static analysis. In Proceedings of
the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pages 576–587.
Fuchs, A. P., Chaudhuri, A., and Foster, J. S. (2009).
SCanDroid: Automated security certification of An-
droid applications. https://www.cs.umd.edu/
∼
avik/
papers/scandroidascaa.pdf.
Huang, W., Troia, F. D., and Stamp, M. (2018). Robust
hashing for image-based malware classification. In
ICETE (1), pages 617–625. SciTePress.
Internet Archive (2018). Internet Archive. https://archive.
org.
Kapratwar, A., Troia, F. D., and Stamp, M. (2017).
Static and dynamic analysis of android malware.
In Proceedings of the 1st International Works-
hop on Formal Methods for Security Engineering,
ForSE 2017, in conjunction with the 3rd Interna-
tional Conference on Information Systems Security
and Privacy (ICISSP 2017), pages 653–662. Sci-
TePress. http://www.scitepress.org/DigitalLibrary/
PublicationsDetail.aspx?ID=mI9FBvhgap4=&t=1.
Landwehr, N., Hall, M., and Frank, E. (2005). Logistic
model trees. Machine Learning, 59(1-2):161–205.
Lin, D. and Stamp, M. (2011). Hunting for undetectable
metamorphic viruses. Journal in Computer Virology,
7(3):201–214.
Malware Forecast (2017). Malware forecast:
The onward march of Android malware.
https://nakedsecurity.sophos.com/2017/11/07/2018-
malware-forecast-the-onward-march-of-android-
malware/.
PlayDrone (2018). PlayDrone: A me-
asurement study of Google Play.
https://systems.cs.columbia.edu/projects/playdrone/.
Quinlan, R. (2018). Software available for download. http:
//www.rulequest.com/Personal/.
Schmeelk, S., Yang, J., and Aho, A. (2015). Android mal-
ware static analysis techniques. In Proceedings of the
10th Annual Cyber and Information Security Research
Conference, CISR ’15, pages 5:1–5:8, New York, NY,
USA. ACM.
Stamp, M. (2017a). Boost your knowledge of adaboost.
https://www.cs.sjsu.edu/
∼
stamp/ML/files/ada.pdf.
Stamp, M. (2017b). Introduction to Machine Learning with
Applications in Information Security. Chapman and
Hall/CRC, Boca Raton.
Stamp, M. (2018). Deep thoughs on deep learning. https:
//www.cs.sjsu.edu/
∼
stamp/ML/files/ann.pdf.
Sugunan, K., Gireesh Kumar, T., and Dhanya, K. A. (2018).
Static and dynamic analysis for android malware de-
tection. In Rajsingh, E. B., Veerasamy, J., Alavi,
A. H., and Peter, J. D., editors, Advances in Big Data
and Cloud Computing, pages 147–155, Singapore.
Springer Singapore.
Yajamanam, S., Selvin, V. R. S., Troia, F. D., and Stamp,
M. (2018). Deep learning versus gist descriptors for
image-based malware classification. In ICISSP, pages
553–561. SciTePress.
Zhou, Y. and Jiang, X. (2012). Dissecting android mal-
ware: Characterization and evolution. In Proceedings
of the 2012 IEEE Symposium on Security and Privacy,
SP ’12, pages 95–109, Washington, DC, USA. IEEE
Computer Society.
Zhou, Y., Wang, Z., Zhou, W., and Jiang, X. (2012). Hey,
you, get off of my market: Detecting malicious apps in
official and alternative Android markets. In 19th An-
nual Network and Distributed System Security Sympo-
sium, NDSS 2012.
A Comparative Analysis of Android Malware
673