4 CONCLUSIONS
From the view point of big volume measurement data,
this is the first time to make a detail traffic flow
analysis in one of major mega city in India. The
Ahmedabad city of Gujarat state is a one of typical
rapid economical grow area in India. Author analyses
one moth traffic flow data based on the traffic flow
theory. By using the uniqueness of the traffic flow
characteristics, it is valid to consider the boundary
observation line in the fundamental diagram from its
traffic flow theory equation. The following are
conclusion of this study.
The boundary observation line of the
fundamental diagram is representative of its
traffic flow characteristics.
The area under the boundary observation line of
the fundamental diagram comes from data of
congested traffic condition time zone.
The critical traffic volume comes from the peak
traffic volume time zone.
The traffic flow model is different from those of
the advanced countries by measurement data
spread plot.
This study is the begging of the analysis of traffic
flow in developing country and it provides different
thoughts about traffic congestion reason. And it is
necessary to have more study about this kind of
research such as driving behaviour, road line effect,
different city case study, long term data collection.
ACKNOWLEDGEMENTS
This study also underwent the ID16667556 of the
International Science and Technology Cooperation
Program (SATREPS) challenges for global
challenges in 2016.
Special appreciation to Mr.Kikuchi.C and
Mr.Mallesh.B of Zero-Sum ITS India for providing
traffic data in Ahmedabad.
REFERENCES
Goutham.M, Chanda.B, 2014. Introduction to the selection
of corridor and requirement, implementation of IHVS
(Intelligent Vehicle Highway System) In Hyderabad,
International Journal of Modern Engineering Research,
Vol.4, Iss.7, pp.49-54.
Salim.A, Vanajakshi.L, Subramanian.C, 2010. Estimation
of Average Space Headway under Heterogeneous
Traffic Conditions, International of Recent Trends in
Engineering and Technology, Vol. 3, No. 5
Carli.R, Dotoli.M, Epicoco.N, 2017. Monitoring traffic
congestion in urban areas through probe vehicle: A
case study analysis, Wiley Online Library, 2017.
https://onlinelibrary.wiley.com/doi/pdf/10.1002/itl2.5.
Ahmed.S.H, et al, 2016. Controlled data and Interest
Evaluation in Viheicular Named data Networks, IEEE
Trans Vehicle Technology, 65(6), pp.395-3963.
Tsuboi.T, Oguri.K, 2016, Traffic Flow Analysis in
Emerging Country, Information Processing Society of
Japan Journal, Vol.57, No.4, pp.1284-1289.
Ohashi.K, Yanagisaa.Y, Takagishi.S, etal. 2009. Traffic
System Engineering, Corona Publising Co. Ltd., p.94.
Greenshields B. D. 1935. A Study of Traffic Capacity, Proc.
H. R. B., 14, pp.448-477.
Kubota.H, Ohashi.T, Takahashi,.K, 2010. Traffic
Engineering and Traffic Planning, Riko Publishing
Co., Ltd., pp.24-25.
Tsuboi.T, Oguri.K, 2016, Analysis of Traffic Flow and
Traffic Congestion in Emerging Country, Information
Processing Society of Japan Journal, Vol.57, No.12,
pp.2819-2826.
Sadakata.M, 975. Measurement of Congestion Degree in
Rood Traffic, The Society of Instrument and Control
Engineers, No.1, Vo.11.
APPENDIX
There is little reference about the Boundary
Observation method in the Appendix. The Figure.A-
1 shows k-v curve at driving lane of Camera#1 with
approximate line by Boundary Observation method
and Least Square method. The Least Square method
is generally used in Statics Analysis for understand
the trend of measurement data. From Figure.A-1, the
equation by Least Square method is right rising curve,
which does not follow the traffic flow theory. On the
other hand, the equation by Boundary Observation
method is right downward curve and follows the
traffic flow theory. In this example, the Boundary
Observation method shows the traffic flow limitation
of each road.
In case of K-Q curve at Camera #1, the traffic flow
characteristics is shown in Figure.A-2. The Boundary
Observation equation of K-Q curve is q= - 0.3516(k –
80)2+2250. Therefore the jam density kj=160. From
equation (4), the free speed v
f
=56.25. When the
Least Square equation of K-Q curve from Figure.A-
2, the traffic volume q= -0.022k
2
+ 31.213k + 4.689 =
-0.022(k-709.4)
2
+503233.2. The jam density k
j
=1418.772. Then free speed v
f
= 31.21. It does not
match with v
f
of Figure.A-1.
As the result, it is able to say that the Least Square
method shows the trend of traffic measurement data
VEHITS 2019 - 5th International Conference on Vehicle Technology and Intelligent Transport Systems
394