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Abstract: MathCheck is a web-based tool for checking all steps of solutions to mathematics, logic and theoretical com-
puter science problems, instead of checking just the final answers. It can currently deal with seven problem
types related to arithmetic, logic, and syntax. Although MathCheck does have some ability to perform sym-
bolic computation, checking is mostly based on testing withmany combinations of the values of the variables
in question. This introduces a small risk of failure of detection of errors, but also significantly widens the
scope of problems that can be dealt with and facilitates providing a concrete counter-example when the stu-
dent’s solution is incorrect. So MathCheck is primarily a feedback tool, not an assessment tool. MathCheck
is more faithful to established mathematical notation thanmost programs. Special attention has been given to
rigorous processing of undefined expressions, such as division by zero. To make this possible, in addition to
the two truth values “false” and “true”, it uses a third truthvalue “undefined”.

1 INTRODUCTION

MathCheck is a web-based program for giving stu-
dents feedback on their solutions to mathematics,
logic and theoretical computer science problems in
elementary university courses. Compared to well-
known systems such as STACK (Sangwin, 2015;
STACK, 2017), MathCheck has three distinctive fea-
tures: it gives feedback on all steps of the solution,
instead of just the final answer; it can deal with some
novel problem types; and it features many commands
with pedagogical motivation. Although an examina-
tion version of MathCheck exists and has been used in
2017 and 2018, MathCheck has been designed not for
giving points but for providing feedback, very much
in the spirit of (Gibbs and Simpson, 2004; Gibbs,
2010).

As an example of the first feature, assume that
the student has been asked to simplify cos2 ω −
cos2ω.1 Forgetting parentheses when applying
cos2x= cos2x− sin2 x, the student types

cosˆ2 om - cosˆ2 om - sinˆ2 om
= -sinˆ2 om

as the solution.
MathCheck yields the feedback shown in Fig-

ure 1. It shows the starting point cos2 ω− cos2ω in

∗Most of the work was done while the author was with
Tampere University of Technology, Finland.

1The reader is invited to try this at
http://users.jyu.fi/∼ava/C19simplify.html. The reader
may edit the answer in the answer box.

Figure 1: An example of arithmetic mode feedback.

black, an equals sign, and the first part of the student’s
answer. The latter two are shown in red, because
the equality does not hold. Next comes a counter-
example to the equality. Finally, graphs of the func-
tions on the left and right hand side of the invalid
equality are shown as curves. The last part= -sinˆ2
om of the student’s solution is not processed, because
MathCheck stops at the first error that it encounters.

It is clear from the feedback that there is a sign er-
ror. (Of course, finding the cause of an error is not al-
ways this easy.) The student fixes the error by adding
the forgotten parentheses. Not yet willing to re-think
the rest of the solution, the student removes it:

cosˆ2 om - (cosˆ2 om - sinˆ2 om)

Now MathCheck replies with cos2 ω − cos2ω =
cos2 ω− (cos2 ω−sin2 ω) and the remark “The com-
plexity of the final expression is 14, while it must be
at most 5.” The remark is in magenta, because the an-
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swer is correct in the mathematical sense, but is longer
than the maximum length stated by the teacher.

The equals sign is in green, because in this case
MathCheck is able toprove that the equality holds.
When MathCheck is unable to prove an equality,
MathCheck just tests it with many value combina-
tions of the variables in question. This involves the
risk that a wrong answer goes undetected, by match-
ing the correct one in all test cases. Fortunately,
for reasons discussed in Section 3, this risk is most
of the time so small that it is not a serious prob-
lem. In the case of inequalities, MathCheck also ap-
plies a numeric hill-climbing method. Therefore, it
finds that, for instance,assume x > 0; xˆ2 / 10
< 1000 + x log x does not hold. (This and many
other small examples of this study can be tried at
http://users.jyu.fi/∼ava/C19others.html).

Finally the student adds= sinˆ2 om to the end
of the solution. MathCheck replies with cos2 ω −
cos2ω = cos2 ω− (cos2 ω− sin2 ω) = sin2 ω and re-
ports that “No errors found. MathCheck is convinced
that there are no errors.”

As an example of a novel problem type, the stu-
dent was asked to write a predicate saying thatH is a
palindrome, whereH is an array that is indexed from
0 to l −1.2 The student writes

AA i; 0 <= i < l: H[i] = H[l-i]

to which MathCheck replies that

model-answer ⇔ ∀i;0≤ i < l : H[i] =H[l − i]
Relation does not hold when H = [0] and l = 1
left = T
right = U

It means that in the case of the array that consists of
one element 0, the model solution given by the teacher
yields T meaning true, but the student’s solution is
undefined, denoted withU. Indeed,∀i;0≤ i < l : tries
only the valuei = 0, becausel = 1. With it, H[l −
i] reduces toH[1], which is undefined, because 1 is
outside the range from 0 tol −1, that is, from 0 to 0.
MathCheck deems the following answer as correct:

AA i; 0 <= i < l: H[i] = H[l-i-1]

MathCheck checks the mathematical meaning of the
answer instead of the precise written form. Therefore,
MathCheck also accepts the following as correct:

!EE n: n >= 0 /\ n < l /\ H[n] !=
H[l-1-n]

That is,¬∃n : n ≥ 0∧ n < l ∧H[n] 6= H[l − 1− n].
Also ∀i;0≤ i < l : H[i]≤ H[l −1− i] is accepted, but
∀i;0 < i < l : H[i] ≤ H[l − 1− i] yields the counter-
exampleH = [1,0] and l = 2. This is because the

2This example can be tried at
http://users.jyu.fi/∼ava/C19array.html.

former tests bothH[0]≤H[l −1] andH[l −1]≤H[0],
but the latter does not testH[0]≤ H[l −1].

Restricting the maximum length of the final an-
swer is an example of a pedagogically motivated com-
mand that the teacher may use. There are also com-
mands for banning the use of chosen operators in the
final answer, requiring that it is in a certain form such
as a product of sums, and affecting the feedback that
MathCheck gives.

The development of MathCheck began in Jan-
uary 2015. The programming has been a one-person
part-time project. Pedagogical experiments have been
performed by him and by mathematics teachers and
bachelor’s or master’s thesis authors in three universi-
ties or schools.

MathCheck has been reported in (Valmari, 2016;
Valmari and Kaarakka, 2016). However, that ver-
sion only had what is calledarithmetic modein this
study, and also the arithmetic mode has been im-
proved since then. Among other things, the presen-
tation of graphs of the left and right hand sides of an
incorrect (in)equality has been added.

The present study focuses on features that Math-
Check offers but most other mathematics pedagogy
tools lack. In Section 2, the problem modes of Math-
Check are introduced. In half of them, MathCheck
checks the solution by incomplete testing. The rea-
sons and consequences of this are discussed in Sec-
tion 3. When programming MathCheck, two is-
sues required performing original technical research:
faithful processing of the syntax of arithmetic expres-
sions as used in everyday mathematics (as opposed to
most mathematical software), and the rigorous treat-
ment of undefined expressions (or partial functions)
in logic. These are dealt with in Sections 4 and 5.
This study is concluded in Section 6.

2 PROBLEM MODES

2.1 Arithmetic Mode

The arithmetic mode was illustrated in Section 1. In
it, MathCheck checks chains consisting of expres-
sions and the relation symbols<, ≤, =, ≥, and>
by testing each (in)equality with many combinations
of values of the variables in question. MathCheck has
the familiar basic arithmetic operators and functions,
excluding the inverse trigonometric functions. Math-
Check has neither summations∑n

i=1, limits limx→,
nor integrals

∫
, because checking expressions by test-

ing does not work well enough with them, because
they are hard to evaluate numerically. MathCheck
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Table 1: Results on a pedagogical experiment.

< 1 hour ≥ 1 hour
n points n points

Wolfram Alpha 19 7.2 31 8.2
MathCheck 26 7.1 30 9.7

has derivatives with respect to any real-valued vari-
able. To keep the number of value combinations used
in testing reasonably small, MathCheck only allows
three simultaneous variables.

Because of pedagogical reasons, MathCheck takes
the issue of undefined expressions seriously, but be-
cause of technical reasons, not perfectly. For in-
stance, givenx/x = 1 or 1/(xˆ2) >= 0 , Math-
Check replies that the relation does not hold when
x = 0, because then the left hand side is undefined
but the right hand side yields 1 or 0. However, Math-
Check does not systematically try to find situations
where one side is undefined and the other side is not.

Value combinations can be ruled out by writing
assume condition; to the front of the relation chain.
For instance, MathCheck deemsassume x != 0;
1/(xˆ2) >= 0 correct. All basic propositional logic
operators can be used in the condition. If the condi-
tion is too exclusive, then MathCheck fails to detect
errors. For instance, MathCheck does not find any
counter-example toassume x > 100; x = 0 .

In an experiment by Terhi Kaarakka and her stu-
dent Veera Hakala (Hakala, 2016), 106 students first
solved 10 exercises. Some were told to use Math-
Check for help (the old version mentioned in Sec-
tion 1), while the rest were told to use Wolfram Al-
pha. The students were asked how much time they
spent with the program. Then there was a small exam-
ination with a maximum of 16 points. Table 1 shows
the average number of points each group received in
the examination. Using resampling, we found that the
difference between the two MathCheck groups is sig-
nificant with p= 0.02.

2.2 Equation Mode

In the equation mode, the teacher gives MathCheck
an equation on one variable. The teacher also gives its
roots or an indication that the equation has no roots.
The task of the student is to solve the equation.

In the example at
http://users.jyu.fi/∼ava/C19equation.html, the
teacher has written

equation
x=0 \/ x=pi/3 \/ x=pi \/ x=4pi/3
ends
/* `x ` must be at least `0 ` and less
than `2 pi `*/

Figure 2: An example of equation mode feedback.

f nodes 25
0 <= x < 2pi /\
2 sinˆ2 x = sqrt(3) sin 2x /**/

The structures/* . . .*/ are comments that are shown
on the feedback page. An empty comment/**/
causes a line break. Inside comments, text en-
closed by ` is shown as mathematics. The command
f nodes 25 sets an upper limit to how complex the
final solution is allowed to be, counted as the number
of nodes in the expression tree (see Section 2.3).

The next lines specify the equation and that only
the roots that are at least 0 and less than 2π are taken
into account. So the equation 2sin2 x=

√
3sin2x can

be presented as a problem although it has infinitely
many roots.

Figure 2 shows the feedback to an answer by the
student. In its last step, the student has replaced
sinx= 0 withx= 0, failing to notice that also sinπ=0
and 0≤ π < 2π. The student fixed the problem. The
rest of the feedback after 0≤ x < 2π ∧ (sinx = 0 ∨
sinx=

√
3cosx) became the following:

⇔ 0≤ x< 2π∧ (sinx= 0∨sin2x= 3cos2x)
⇔ 0 ≤ x < 2π ∧ (sinx = 0∨ sin2x = 3(1−
sin2x))
⇔ 0≤ x< 2π∧ (sinx= 0∨4sin2 x= 3)

⇔ 0 ≤ x < 2π ∧ (sinx = 0∨ sinx =
√

3
2 ∨

sinx=−
√

3
2 )

⇔ x= 0∨x= π∨x= π
3 ∨x= 2π

3 ∨x= 4π
3 ∨x=

5π
3

The equation does not hold when x ≈
2.094395
The first expression with this solution may be
0≤ x< 2π∧ (sinx= 0∨sin2x= 3cos2x)
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To be able to exploit the formula sin2x+ cos2 x = 1,
the student had squared both sides of sinx=

√
3cosx,

forgetting that in addition to its roots, sin2 x= 3cos2x
has also the roots of sinx = −

√
3cosx. The student

replaces the problematic line with

==> 0 <= x < 2pi /\
( sin x = 0 \/ sinˆ2 x = 3 cosˆ2 x )

/**/

and, after thinking about the signs of sinx and cosx,
replaces

original <=> x = 0 \/ x = pi \/ x =
pi/3 \/ x = (4 pi)/3

for the last line. MathCheck accepts this solution. The
implication sign⇒ tells that one-sided reasoning was
applied, so the subsequent equations must have all the
roots of the original equation, but they may also have
additional roots. The wordoriginal switches the
banishment of additional roots on again. Between⇒
andoriginal , repeating 0≤ x< 2π∧ is unnecessary.

The example above reveals that the starting point
and steps of a solution are not necessarily equations,
but more general claims consisting of comparisons
put together using propositional operators. For each
claim in the student’s solution, MathCheck checks (to
the extent it can, please see Section 3) that every root
given by the teacher also satisfies the claim. If⇒ has
not been used or its effect has been cancelled with
original , MathCheck also checks that each explicit
root given by the student satisfies the original claim.
The explicit roots inx = 0∨ x = π∨ sinx =

√
3cosx

are 0 andπ. On the other hand, 0≤ x < 2π ∧ (x =

0∨x= π∨sinx=
√

3cosx) has no explicit roots, be-
cause it is pending the reasoning whether 0≤ x< 2π
rules out 0,π, or both.

2.3 Tree Comparison Mode

Mathematicians, logicians, and especially computer
scientists often think of expressions as representations
of abstractexpression trees. The expressions 1+2+3

and(1+2)+3 have the same expression tree1

+

2

+

3
,

but 1+(2+3) has a different tree 3

+

2

+

1
, although

(x+y)+zandx+(y+z) always yield the same value
in mathematics.

In elementary schools, pupils are taught that in
the absence of parentheses, multiplication is evalu-
ated before addition. That is,x+ yz is interpreted
like x+(yz) and not like(x+ y)z. In programming
languages, the same is expressed by saying that mul-
tiplication has higherprecedencethan addition. For
instance, C++ had 18 precedence levels already in

Figure 3: An example of tree comparison mode feedback.

1997 (Stroustrup, 1997). Precedence does not resolve
whether, for instance, 8−5−2 should be interpreted
like (8−5)−2 or like 8−(5−2), because subtraction
obviously has the same precedence with itself. Sub-
traction and most other operators areleft-associative,
that is,x◦ y◦ z is interpreted like(x◦ y)◦ z. However,
223

is interpreted like 2(2
3) = 28 = 256 and not like

(22)3 = 43 = 64, so the power operator of mathemat-
ics is right-associative.

Although precedence and left- or right-
associativity are not complicated ideas, it is the
experience of the present authors that some students
have problems with them. For instance, left- and
right-associativity are sometimes confused with
associativity, that is, the property that for allx, y,
and z, (x ◦ y) ◦ z = x ◦ (y ◦ z). Because left- and
right-associativity (and precedence) are syntactic
concepts while associativity is a semantic con-
cept, this means that the student does not master
the distinction between syntax and semantics.
Mathematics teachers often tell that students have
difficulties in applying the chain rule in calculus, that
is, d

dx f (g(x)) = d
dy f (y)

∣

∣

y=g(x)
d
dxg(x). The present

authors believe that understanding expression trees
would help learning to apply the chain rule.

Figure 3 shows feedback by MathCheck to an
incorrect answer to the expression tree problem at
http://users.jyu.fi/∼ava/C19tree.html. On the problem
page, the upper expression tree was shown, and the
student was asked to write an expression that yields
the same tree. The hidden information given by the
teacher wastree compare (x-(y+1))(1+y-x); .
The student replied(x-y+1)*(1+y-x) . The feed-
back indicates a problem with the first factor.

In mathematics (and unlike many programming
languages),≤ is neither left- nor right-associative, but
conjunctional(Gries and Schneider, 1993). That is,
1≤ i ≤ n means neither(1≤ i)≤ n nor 1≤ (i ≤ n) but
1≤ i∧ i ≤ n. To emphasize this, MathCheck draws all
relation operators in a relation chain as a single tree
node that has one more subtrees than there are rela-
tion symbols in the node.
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The tree comparison mode was implemented in
early 2017. The first author used it on a mid-level
computer science course. The students were given a
series of 16 problems to solve at home. The 19 stu-
dents who claimed to have solved all or most of them
were able to easily solve them again in the class. Ev-
ery student who collected any credit from any of the
numerous voluntary exercises available in the course
did at least these tree comparison problems.

2.4 Array Claim Mode

This mode was already illustrated in Section 1. Its
pedagogical goal is to support development of pre-
cise logical thinking that is important in programming
and capturing user requirements (Lethbridge, 2000;
Surakka, 2007; Valmari, 2003).

The teacher wrote the following in the example in
Section 1:

array claim H[0...l-1]
f nodes 20
AA i; 0 <= i < l: H[i] = H[l-i-1]
<=>

The first line specifies that the name of the array in
question isH and its indices range from 0 tol − 1,
where l is an integer variable. Then the length of
the final version of the student’s answer is restricted.
(The student may develop the answer in steps sepa-
rated with<=>, that is,⇔. Only the last version need
be short enough.) The model answer by the teacher is
∀i;0≤ i < l : H[i] = H[l − i −1].

In one problem,K was indexed from 0 toM,
and the student was asked to write a predicate saying
that the first, second, and last element exist and are
different from each other. During the winter 2016–
2017, some students and colleagues of the first au-
thor first gave the incorrect answerM ≥ 2 ∧ K[0] 6=
K[1] 6= K[M]. MathCheck gave the counter-example
K = [0,1,0] and M = 2. It made them realize that
althoughK[0] ≤ K[1] ≤ K[M] implies K[0] ≤ K[M],
the same does not happen with6=. Then they solved
the problem correctly. A correct answer isM ≥ 2 ∧
K[0] 6= K[1] 6= K[M] 6= K[0].

MathCheck checks the student’s answer by trying
all arrays of size at most 4 whose elements are inte-
gers in the range from 0 to 3. The teacher must take
this into account when designing problems, so that the
checking is capable of revealing errors. For instance,
the teacher should not ask to write a predicate saying
that the array contains at least one negative element.

2.5 Propositional Logic Mode

In this mode, MathCheck checks reasoning chains
built from truth value constants, propositional vari-
ables, the propositional operators¬, ∧, ∨, →, ↔, and
the reasoning operators⇐, ⇔, and⇒. The teacher
chooses whether the undefined truth valueU is in the
logic. The number of simultaneous variables is re-
stricted to 10, facilitating exhaustive checking. So in
this mode MathCheck never fails to detect existing
errors (assuming, of course unrealistically, that Math-
Check contains no programming errors). The teacher
can declare that the final formula must be in conjunc-
tive (or disjunctive) normal form.

This mode was implemented mostly as a prelim-
inary step en route to the equation, array claim, and
modulo modes, which use propositional and reason-
ing operators in a wider context. We now discuss an
issue that applies also in these other modes.

The distinction between the propositional opera-
tors→ and↔ on one hand and the reasoning opera-
tors⇒ and⇔ on the other hand is often not properly
dealt with in textbooks on logic. Consider solving the
equation 2x− 6 = 0. In a first step it is transformed
to 2x = 6 and in a second step tox = 3. In Math-
Check and some courses on mathematics,⇔ is used
as handy notation for expressing the progress of the
reasoning: 2x−6= 0⇔ 2x= 6⇔ x= 3.

When used like this,⇐, ⇔, and⇒ are not propo-
sitional operators that yield truth values. The propo-
sitional operator that yieldsT if and only if both sides
yield the same (defined) truth value is↔. Although
2x− 6 = 0 ⇔ 2x = 6 ⇔ x = 3 is correct reasoning,
2x−6= 0↔ 2x= 6↔ x= 3 does not yieldT when
x= 0, because then it reduces toF↔ F↔ F, further
to T↔ F, and finally toF. That is, the propositional
operators are comparable to arithmetic operators such
as+ and·, and the reasoning operators are compara-
ble to arithmetic relations such as= and≤. Please
see (Valmari and Hella, 2017) for more differences
between⇔ and↔.

2.6 Modulo Mode

This mode is chosen withmodulo M, whereM is an
integer constant in the range 2≤ M ≤ 25. In it, Math-
Check checks reasonings in the quotient ring whose
elements are{0, . . . ,M − 1}. They may consist of
reasoning and propositional operators, comparisons,
and restricted arithmetic expressions. For instance,
sin and ln are not allowed, because they have no nat-
ural meaning in the ring. To emphasize that there are
no negative numbers,|x| is not allowed. Powers and
roots are allowed, but the exponent must be a non-
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Figure 4: An example derivation tree.

negative integer constant and the degree of the root
must be a positive integer constant.

This mode was implemented because it facilitates
complete checking of reasoning. It may have peda-
gogical use when studying modular arithmetic, which
is an important topic for computer science students.
It has proven very useful on problems outside modulo
arithmetic, for instance, when the student is expected
to answer with a comparison such asn< i +1. Even
if the problem is on integers, checking the answer in
modulo arithmetic yields appropriate feedback.

2.7 Context-free Grammar Mode

This mode was implemented in autumn 2018. Math-
Check can test whether a given string belongs to a
given language specified as a context-free grammar
(CFG), and draw a derivation tree when it does. It can
also check whether two given CFGs specify the same
language. The teacher may ban ambiguous CFGs.

Figure 4 shows the derivation tree ofab when the
CFG isS ::= ε | aSbS| bSaS. This CFG generates the
strings with an equal number ofa’s andb’s.

During the autumn 2018, feedback from 28 stu-
dents was obtained. The students experienced this
teaching method very positively. All but one replied
“weakly agree” or “strongly agree” to “it was more
pleasant to study in this way than with traditional ex-
ercises” and to “I believe that I learnt more than I
would have learnt with traditional exercises.” The
last student chose the neutral reply. These gave av-
erages 4.4 and 4.3 in the scale from 1 to 5, satisfying
p = 0.1%. Altogether 11 questions hadp = 0.1%,
two more hadp = 1%, two more hadp = 5%, and
three had less statistical significance. Among the last
three was “There were many too easy problems”.

The problem whether two CFGs generate the
same language is undecidable, that is, no algorithm
can solve it completely. MathCheck performs the
check by generating strings according to both CFGs
in shortlex order. If it finds a string that is generated
by one CFG but not the other, it reports it as a counter-
example. Otherwise, it eventually gives up.

3 INCOMPLETE CHECKING

The ability of MathCheck to check the answers is not
perfect. MathCheck does contain some theorem prov-
ing and symbolic computation capability, but they
cannot solve all situations. It follows from (Richard-
son, 1968) that no computer program can perform
perfectly the tasks that the arithmetic mode of Math-
Check performs imperfectly. This means that a trade-
off has to be made between the level of perfection and
programming effort. Therefore, MathCheck checks
many solutions by testing.

Checking by testing allows MathCheck to give
useful feedback to the students. Replying with “this
simplification step is incorrect” would be less useful
to the student than what MathCheck gives, that is, a
numerical counter-example and graphs of the left and
right hand sides of the incorrect relation.

Two different functions built from everyday math-
ematical operators obtain the same value typically
only on isolated points. When hundreds of points
are tested, it is possible but very unlikely that they all
happen to be among those where the funtions agree.
This makes the testing approach rather reliable. Math-
Check becomes unreliable when most of the test val-
ues are excluded for one reason or another. For in-
stance, MathCheck fails to see that

√
x−100 is not

the same function as ln(x− 99), because they are
both undefined whenx ≤ 99. In this kind of cases,
MathCheck gives a warning. MathCheck can also be
fooled relatively easily with 100− x= |100− x| and
with the floor and ceiling operators.

After an inequality such asf (x,y) > g(x,y) has
passed a test value combination(x0,y0), MathCheck
tries whether changing the value ofx0 or y0 would
make f (x,y) − g(x,y) smaller. Therefore, Math-
Check finds the counter-example 10000.11 to (x−
10000.1)(x−10000.2)≥ 0, although it is not near 0.

The most harmful imperfection is that MathCheck
is not good with cases likex−12

x−12 = 1, where there are
isolated points making one but not the other func-
tion undefined. This problem was discussed in Sec-
tion 2.1, in the context of undefined expressions.

Because computer arithmetic is not precise, Math-
Check cannot always use precise values. MathCheck
uses precise rational number arithmetic when it can,
and then switches to a representation consisting of a
lower bound and upper bound represented as double-
precision floating point numbers. MathCheck also
keeps track of whether the value may be undefined.
The interval as a whole must be a counter-example
for MathCheck to report it as a counter-example. As
a consequence, MathCheck does not deem sinπ < 0
as incorrect, but does deem sinπ <−7.66·10−16.
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4 SYNTAX ISSUES

MathCheck tries to obey the established mathematical
notation as strictly as possible, and much better than
other computer programs. The established notation
proved surprisingly ill-defined and self-contradictory.

The formula sin2x = 2sinxcosx is well-known.
If invisible multiplication has lower precedence than
sin, then the left hand side is interpreted incorrectly as
(sin2)x. With the opposite assumption, the right hand
side is interpreted incorrectly as 2sin(xcosx). That is,
no ordinary precedence rule yields the intended inter-
pretation sin(2x) = 2(sinx)cosx.

Because of this kind of confusions, some people
always write parentheses around the argument of a
function. To accept but not demand this convention,
MathCheck obeys the complicated rule that invisible
multiplication has higher precedence than function
calls except if the multiplicand is a function call or∂

∂x ,
or the argument of the original function begins with
(. The latter exception is because without it, the rule
would make ln(x+1)x mean the same as ln((x+1)x),
conflicting with the expectation of many people.

The product|x|y|z| may be interpreted as both
(|x|)y(|z|) and |x(|y|)z|. MathCheck uses(|x|)y(|z|).
Mixed numbers such as 12

3 are inputted as1 2/3 .
Whenx= 2 we have 21x = 2· 1

2 = 1, but literally writ-
ing 2 in the place ofx in 21

x would yield the mixed
number 212 = 2.5. So MathCheck disallows the input
2 1/x , but allows 2 (1/x) and prints it as 21x .

Multiplication is sometimes written as· or × in
mathematics. MathCheck allows·, which is inputted
as * (or as such, because MathCheck allows Uni-
code versions of many mathematical symbols, mak-
ing copying and pasting largely possible). Its prece-
dence is lower than those of the invisible product and
function calls, and higher than that of+ and−. It
can, for instance, be used to clarify|x|y|z|, by writing
either|x · |y| ·z| or |x| ·y · |z|.

We emphasize that these problems are in the es-
tablished mathematical notation, and thus exist inde-
pendently of MathCheck. Making MathCheck obey
the established notation required hard thinking and
programming effort. We are aware of no other pro-
gram that is as faithful to the established notation.

5 LOGIC IN MathCheck

Most elementary-level textbooks on logic (such as
(Gries and Schneider, 1993)) only use the two truth
valuesF andT. Consider the claim∀x;x 6= 0 : 1

x2 > 0.
It would be attractive to think that because of the part

“x 6= 0”, the evaluation of the claim avoids evaluating
1
02 > 0. However, by the definitions of bounded quan-
tifiers,→, and 6=, and by the commutativity of∨, the
claim is logically equivalent to∀x : 1

x2 > 0∨ x = 0.

This is undefined, because1
02 > 0 is undefined.

Re-defining bounded quantification in the obvious
way would force us to refrain from writing∀x : tanx=
sinx
cosx and write instead something like∀x;(¬∃n ∈ Z :
x= (n+ 1

2)π) : tanx= sinx
cosx . This is not attractive.

This problem was solved without usingU in
(Spivey, 1992). Unfortunately, the solution is un-
natural, because it makes many intuitively undefined
claimsT.

Intuitively, the negation of an undefined claim
is also undefined. This can be obtained by em-
ploying U and declaring that¬U yields U. Math-
Check uses the 3-valued propositional logic of Kleene
(Kleene, 1964; Fronhöfer, 2011). It is also used in
(Jones, 1991). The 3-valued propositional logic of
Łukasiewicz (Łukasiewicz, 1930; Fronhöfer, 2011)
provably fails a property that is crucial for the rea-
soning system discussed below.

As was discussed in Section 3, MathCheck may
use intervals. This implies that a comparison such
as

√
sinπ = 0 may yield any non-empty combination

of F, U, andT. The truth value data type of Math-
Check implements such combinations. For instance,
the combinationFUT means that nothing is known,
while FU means that the result cannot be true but it is
not known whether it is false or undefined.

In the equation and modulo modes,f (x) = 0 ⇔
x= x1∨·· ·∨x= xn means that the set of those values
of x wheref (x) is defined andyields 0 is{x1, . . . ,xn}.
To make this work with such cases as 3

√
x= x+2⇔

x= 1∨x= 4, it was necessary to letU⇔ F, because
with negative values ofx, 3

√
x = x+ 2 is undefined

but x= 1∨x = 4 yieldsF. Unlike the truth values of
claims, this does not cause problems with negation,
because¬(ϕ ⇔ ψ) is a syntax error. The distinction
between↔ and⇔ proved again important. The sym-
bols⇒ and⇔ do not yield truth values but express
reasoning steps that are either valid or invalid.

Please see (Valmari and Hella, 2017) for more in-
formation on logic in MathCheck.

6 CONCLUSIONS

We discussed the MathCheck tool that gives students
feedback on their solutions to mathematics and theo-
retical computer science problems. It supports both
some traditional problem types, mainly simplifica-
tion, derivatives, and equations; and some unconven-
tional problem types related to syntax and logic. New

CSEDU 2019 - 11th International Conference on Computer Supported Education

298



problem modes (such as set theory) and extensions to
existing problem modes (such as solving inequalities)
are in the dream list.

In some modes, MathCheck often checks the an-
swer only incompletely, by testing with many value
combinations of the variables in question. As a con-
sequence, MathCheck may fail to find an error. Fortu-
nately failure is unlikely as long as the user does not
intentionally exploit the weaknesses of MathCheck.
In return, the testing approach facilitates providing
feedback on all steps of the student’s solution, even in
the absence of a teacher-given solution and indepen-
dently of the path that the student chose towards the
final answer. Furthermore, if the solution proves in-
correct, the student gets a concrete counter-example.

In the equation mode, checking is slightly unreli-
able due to numerical imprecision. Spurious roots are
detected later than one might wish. Again, these are
small problems. In return, the mode can deal with
very many kinds of equations, instead of being re-
stricted to, say, quadratic equations. The array claim
mode is sufficiently reliable only if the teacher takes
the checking algorithm into account when designing
problems. On the other hand, it offers a service that is
absent from most, or perhaps all, other tools.

We also discussed some problems in the estab-
lished mathematical notation. Because of them, most
programs force the user to deviate from the estab-
lished notation, usually by writing additional paren-
theses or explicit multiplication symbols. A lot of
effort was made so that MathCheck would not force
such deviations.

Traditional binary logic does not suffice for Math-
Check. This was solved by introducing a truth value
representing undefined and by using⇒ and⇔ as rea-
soning operators with significantly different proper-
ties from propositional operators.

Not many pedagogical experiments have been
made with MathCheck. In those that have been made,
the results have been very encouraging.
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Karhumäki, J. and Saarela, A., editors,Proceedings
of the Finnish Mathematical Days 2016, number 25 in
TUCS Lecture Notes, pages 44–46.

Valmari, A. and Hella, L. (2017). The logics taught and
used at high schools are not the same. In Karhumäki,
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