REFERENCES
Acosta-Marum, G. and Ingram, M. A. (2007). Six time-
and frequency- selective empirical channel models for
vehicular wireless LANs. IEEE Vehicular Technology
Magazine, 2(4):4–11.
Araniti, G., Campolo, C., Condoluci, M., Iera, A., and
Molinaro, A. (2013). LTE for vehicular networking: a
survey. IEEE Communications Magazine, 51(5).
Bernado, L., Zemen, T., Tufvesson, F., Molisch, A. F., and
Mecklenbr
¨
auker, C. F. (2014). Delay and Doppler
Spreads of Nonstationary Vehicular Channels for
Safety-Relevant Scenarios. IEEE Transactions on Ve-
hicular Technology, 63(1):82–93.
Boban, M., Vinhoza, T. T. V., Ferreira, M., Barros, J., and
Tonguz, O. K. (2011). Impact of Vehicles as Obsta-
cles in Vehicular Ad Hoc Networks. IEEE Journal on
Selected Areas in Communications, 29(1):15–28.
Bundesnetzagentur (2016). EMF-Datenbank. https://emf3.
bundesnetzagentur.de/karte/. Last checked on Dec 14,
2018.
Cecchini, G., Bazzi, A., Masini, B. M., and Zanella, A.
(2017). LTEV2Vsim: An LTE-V2V simulator for
the investigation of resource allocation for coopera-
tive awareness. In 2017 5th IEEE International Con-
ference on Models and Technologies for Intelligent
Transportation Systems (MT-ITS), pages 80–85.
Czink, N. and Oestges, C. (2008). The COST 273 MIMO
Channel Model: Three Kinds of Clusters. In 2008
IEEE 10th International Symposium on Spread Spec-
trum Techniques and Applications, pages 282–286.
FOSSGIS e.V. (2018). OpenStreetMap - Deutschland.
https://www.openstreetmap.de/. Last checked on
Dec 14, 2018.
Guenther, H. J., Riebl, R., Wolf, L., and Facchi, C. (2016).
Collective perception and decentralized congestion
control in vehicular ad-hoc networks. In 2016 IEEE
Vehicular Networking Conference (VNC), pages 1–8.
Hameed Mir, Z. and Filali, F. (2014). LTE and IEEE
802.11p for vehicular networking: a performance
evaluation. EURASIP Journal on Wireless Commu-
nications and Networking, 2014(1):89.
Intelligent Transport Systems (2012). Framework for Public
Mobile Networks in Cooperative ITS (C-ITS). Tech-
nical report, ETSI.
J. Maurer and T. Fugen and T. Schafer and W. Wiesbeck
(2004). A new inter-vehicle communications (IVC)
channel model. In IEEE 60th Vehicular Technology
Conference, 2004. VTC2004-Fall. 2004, volume 1.
Jakes, W. C. (1974). Microwave Mobile Communications.
John Wiley & Sons.
Kraftfahrt Bundesamt (2016). Fahrzeugbestand im Ue-
berblick. https://www.kba.de/DE/Statistik/. Last
checked on Apr 14, 2018.
Krajzewicz, D., Hertkorn, G., Roessel, C., and Wagner, P.
(2002). SUMO (Simulation of Urban MObility); An
open-source traffic simulation. 4th Middle east sym-
posium on simulation and modelling (MESM 2002).
Ky
¨
osti, P., Meinil
¨
a, J., and Hentil
¨
a, L. (2008). Winner II
Channel Models ver. 1.2. Technical Report D1.1.2,
Winner II Project.
Liu, Z., Liu, Z., Meng, Z., Yang, X., Pu, L., and Zhang,
L. (2016). Implementation and performance measure-
ment of a V2X communication system for vehicle and
pedestrian safety. International Journal of Distributed
Sensor Networks, 12(9):1550147716671267.
Maaz, I., Conrat, J., and Cousin, J. (2015). Channel Model
Validation for the Relay-Mobile Link in Microcell En-
vironment. In 2015 IEEE 82nd Vehicular Technology
Conference (VTC2015-Fall), pages 1–5.
Masini, B., Bazzi, A., and Zanella, A. (2018). A survey on
the roadmap to mandate on board connectivity and en-
able V2V-based vehicular sensor networks. Sensors,
18(7):2207.
Moller, A., Nuckelt, J., Rose, D. M., and Kurner, T. (2014).
Physical Layer Performance Comparison of LTE and
IEEE 802.11p for Vehicular Communication in an Ur-
ban NLOS Scenario. In 2014 IEEE 80th Vehicular
Technology Conference (VTC2014-Fall), pages 1–5.
Niemeyer, G. (2008). Geohash. https://en.wikipedia.org/
wiki/Geohash. Last checked on Dec 14, 2018.
Nilsson, M. G., Gustafson, C., Abbas, T., and Tufvesson,
F. (2017). A Measurement-Based Multilink Shadow-
ing Model for V2V Network Simulations of Highway
Scenarios. IEEE Transactions on Vehicular Technol-
ogy, 66(10):8632–8643.
Sommer, C., German, R., and Dressler, F. (2011). Bidirec-
tionally Coupled Network and Road Traffic Simula-
tion for Improved IVC Analysis. IEEE Transactions
on Mobile Computing, 10(1):3–15.
Sommer, C., Joerer, S., Segata, M., Tonguz, O. K.,
Lo Cigno, R., and Dressler, F. (2015). How Shad-
owing Hurts Vehicular Communications and How Dy-
namic Beaconing Can Help. IEEE Transactions on
Mobile Computing, 14(7):1411–1421.
Varga, A. and Hornig, R. (2008). An Overview of the OM-
NeT++ Simulation Environment. In Proceedings of
the 1st International Conference on Simulation Tools
and Techniques for Communications, Networks and
Systems & Workshops.
Vinel, A. (2012). 3GPP LTE Versus IEEE 802.11p/WAVE:
Which Technology is Able to Support Cooperative
Vehicular Safety Applications? IEEE Wireless Com-
munications Letters, 1(2):125–128.
Virdis, A., Stea, G., and Nardini, G. (2015). Simulat-
ing LTE/LTE-Advanced Networks with SimuLTE. In
Simulation and Modeling Methodologies, Technolo-
gies and Applications.
Viriyasitavat, W., Boban, M., Tsai, H., and Vasilakos, A.
(2015). Vehicular Communications: Survey and Chal-
lenges of Channel and Propagation Models. IEEE Ve-
hicular Technology Magazine, 10(2):55–66.
Xiao, L., Zhuang, W., Zhou, S., and Chen, C. (2019). Intel-
ligent Network Access System for Vehicular Real-Time
Service Provisioning, chapter Intelligent Network Ac-
cess System for Vehicular Real-Time Service Provi-
sioning, pages 79–104. Springer International Pub-
lishing, Cham.
Safety-relevant V2X Beaconing in Realistic and Scalable Heterogeneous Radio Propagation Fading Channels
411