Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 770–778. IEEE.
He, W., Wei, J., Chen, X., Carlini, N., and Song, D. (2017).
Adversarial Example Defenses: Ensembles of Weak
Defenses are not Strong. In 11th USENIX Workshop
on Offensive Technologies (WOOT’ 17), Vancouver,
CA.
Hendrycks, D. and Gimpel, K. (2017). Early methods for
detecting adversarial images. Workshop track -ICLR
2017.
Hu, J., Shen, L., and Sun, G. (2017). Squeeze-
and-excitation networks. arXiv preprint
arXiv:1709.01507.
Kannan, H., Kurakin, A., and Goodfellow, I. (2018). Adver-
sarial logit pairing. arXiv preprint arXiv:1803.06373.
Karpathy, A. (2014). What I learned from competing
against a ConvNet on Imagenet. Available at
http://karpathy.github.io/2014/09/02/what-i-learned-
from-competing-against-a-convnet-on-imagenet.
Accessed in September 02, 2018.
Klarreich, E. (2016). Learning securely. Communications
of the ACM, 59(11):12–14.
Krizhevsky, A. and Hinton, G. (2009). Learning multiple
layers of features from tiny images.
Kurakin, A., Goodfellow, I., and Bengio, S. (2016a). Adver-
sarial examples in the physical world. arXiv preprint
arXiv:1607.02533.
Kurakin, A., Goodfellow, I., and Bengio, S. (2016b). Ad-
versarial machine learning at scale. arXiv preprint
arXiv:1611.01236.
LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998).
Gradient-based learning applied to document recogni-
tion. Proceedings of the IEEE, 86(11):2278–2324.
Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and
Vladu, A. (2017). Towards deep learning mod-
els resistant to adversarial attacks. arXiv preprint
arXiv:1706.06083.
Meng, D. and Chen, H. (2017). Magnet: a two-pronged
defense against adversarial examples. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, pages 135–147. ACM.
Metzen, J. H., Genewein, T., Fischer, V., and Bischoff, B.
(2017). On detecting adversarial perturbations. arXiv
preprint arXiv:1702.04267.
Moosavi-Dezfooli, S.-M., Fawzi, A., and Frossard, P.
(2016). Deepfool: a simple and accurate method to
fool deep neural networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recogni-
tion, pages 2574–2582.
Nicolae, M.-I., Sinn, M., Tran, M. N., Rawat, A., Wistuba,
M., Zantedeschi, V., Baracaldo, N., Chen, B., Ludwig,
H., Molloy, I., and Edwards, B. (2018). Adversarial
robustness toolbox v0.3.0. CoRR, 1807.01069.
Obermeyer, Z. and Emanuel, E. J. (2016). Predicting
the future — big data, machine learning, and clini-
cal medicine. The New England journal of medicine,
375(13):1216.
Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik,
Z. B., and Swami, A. (2017). Practical Black-Box At-
tacks against Machine Learning. In ACM Asia Con-
ference on Computer and Communications Security
(ASIACCS), pages 506–519.
Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Ce-
lik, Z. B., and Swami, A. (2016a). The limitations of
deep learning in adversarial settings. In Security and
Privacy (EuroS&P), 2016 IEEE European Symposium
on, pages 372–387. IEEE.
Papernot, N., McDaniel, P., Wu, X., Jha, S., and Swami,
A. (2016b). Distillation as a Defense to Adversar-
ial Perturbations Against Deep Neural Networks. In
Proceedings - 2016 IEEE Symposium on Security and
Privacy, SP 2016, pages 582–597.
Springenberg, J. T., Dosovitskiy, A., Brox, T., and Ried-
miller, M. (2014). Striving for simplicity: The all con-
volutional net. arXiv preprint arXiv:1412.6806.
Srivastava, S., Priyadarshini, J., Gopal, S., Gupta, S., and
Dayal, H. S. (2019). Optical character recognition
on bank cheques using 2d convolution neural network.
In Applications of Artificial Intelligence Techniques in
Engineering, pages 589–596. Springer.
Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan,
D., Goodfellow, I., and Fergus, R. (2013). Intriguing
properties of neural networks. In International Con-
ference on Learning Representations, pages 1–10.
Tolosana, R., Vera-Rodriguez, R., Fierrez, J., and Ortega-
Garcia, J. (2018). Exploring recurrent neural networks
for on-line handwritten signature biometrics. IEEE
Access, 6(5128-5138):1–7.
Xu, W., Evans, D., and Qi, Y. (2018). Feature squeez-
ing: Detecting adversarial examples in deep neural
networks. Network and Distributed Systems Security
Symposium (NDSS) 2018.
Zantedeschi, V., Nicolae, M.-I., and Rawat, A. (2017). Effi-
cient defenses against adversarial attacks. In Proceed-
ings of the 10th ACM Workshop on Artificial Intelli-
gence and Security, pages 39–49. ACM.
ICEIS 2019 - 21st International Conference on Enterprise Information Systems
318