REFERENCES
Abriata, L. A. (2016). Structural database resources for
biological macromolecules. Briefings in
bioinformatics, 18(4), 659-669.
Aydin, Z., Kaynar, O., Görmez, Y., And Işik, Y. E. (2018).
Comparison of machine learning classifiers for protein
secondary structure prediction. 26th Signal Processing
and Communications Applications Conference.
Berman, H. M., Kleywegt, G. J., Nakamura, H., And
Markley, J. L. (2014). The Protein Data Bank archive
as an open data resource. Journal of Computer-aided
Molecular Design, 28(10), 1009-1014.
Brandon, C. J., Martin, B. P., McGee, K. J., Stewart, J. J.,
And Braun-Sand, S. B. (2015). An approach to creating
a more realistic working model from a protein data bank
entry. Journal of molecular modeling, 21(1).
Chen, Z., Zhao, P., Li, F., Leier, A., Marquez-Lago, T. T.,
Wang, Y., and Song, J. (2018). iFeature: a python
package and web server for features extraction and
selection from protein and peptide sequences.
Bioinformatics.
Corral-Corral, R., Chavez, E., And Del Rio, G. (2015).
Machine learnable fold space representation based on
residue cluster classes. Computational Biology and
Chemistry, 59, pp. 1-7.
Correa, L., Borguesan, B., Farfán, C., Inostroza-Ponta, M.,
And Dorn, M. (2018). A Memetic Algorithm for 3D
Protein Structure Prediction Problem. IEEE/ACM
transactions on computational biology and
bioinformatics, 15(3), 690-704.
Crivellaro, A., Rad, M., Verdie, Y., Yi, K. M., Fua, P., And
Lepetit, V. (2018). Robust 3D object tracking from
monocular images using stable parts. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 40(6), pp. 1465-1479.
Dai, A., Nießner, M., Zollhöfer, M., Izadi, S., And
Theobalt, C. (2017). Bundlefusion: Real-time globally
consistent 3d reconstruction using on-the-fly surface
reintegration. ACM Transactions on Graphics, 36(4).
Dapkūnas, J., Timinskas, A., Olechnovič, K.,
Margelevičius, M., Dičiūnas, R., And Venclovas, Č.
(2017). The PPI3D web server for searching, analyzing
and modeling protein–protein interactions in the
context of 3D structures. Bioinformatics, 33(6).
Frappier, V., Duran, M., And Keating, A. E. (2018).
PixelDB: Protein–peptide complexes annotated with
structural conservation of the peptide binding mode.
Protein Science, 27(1), pp. 276-285.
Ge, M., Helfert, M. (2008), Effects of information quality
on inventory management. International Journal of
Information Quality, 2(2), pp. 177-191.
Ge, M., Helfert, M. (2006), A Framework to Assess
Decision Quality Using Information Quality
Dimensions. 11th International Conference on
Information Quality, pp.455-466.
Helfert, M., Foley, O., Ge, M., Cappiello, C. (2009),
Analysing the effect of security on information quality
dimensions. 17th European Conference on Information
Systems, pp.2785-2797, 2009.
Joosten, R. P., Joosten, K., Cohen, S. X., Vriend, G., And
Perrakis, A. (2011). Automatic rebuilding and
optimization of crystallographic structures in the
Protein Data Bank. Bioinformatics, 27(24).
Joosten, R. P., Long, F., Murshudov, G. N., And Perrakis,
A. (2014). The PDB_REDO server for macromolecular
structure model optimization. International Union of
Crystallography, 1(4), 213-220.
Kalaivani, S., Ramyachitra, D., And Manikandan, P.
(2018). K-means Clustering: An Efficient Algorithm
for Protein Complex Detection. In Progress in
Computing, Analytics and Networking, pp. 449-459.
Li, Q., Li, W., Zhang, J., And Xu, Z. (2018). An improved
k-nearest-neighbor method to diagnose breast cancer.
Analyst.
Lütteke, T., And Von Der Lieth, C. W. (2004). pdb-care
(PDB carbohydrate residue check): a program to
support annotation of complex carbohydrate structures
in PDB files. BMC bioinformatics, 5(1).
Palenzuela, C. L. M., And Pumera, M. (2018). (Bio)
Analytical chemistry enabled by 3D printing: Sensors
and biosensors. TrAC Trends in Analytical Chemistry.
Quignot, C., Rey, J., Yu, J., Tufféry, P., Guerois, R., And
Andreani, J. (2018). InterEvDock2: an expanded server
for protein docking using evolutionary and biological
information from homology models and multimeric
inputs. Nucleic acids research.
Read, R. J., Adams, P. D., Arendall III, W. B., Brunger, A.
T., Emsley, P., Joosten, R. P., and Perrakis, A. (2011).
A new generation of crystallographic validation tools
for the protein data bank. Structure, 19(10), 1395-1412.
Tiwari, A. K., And Srivastava, R. (2018). An Efficient
Approach for Prediction of Nuclear Receptor and Their
Subfamilies Based on Fuzzy k-Nearest Neighbor with
Maximum Relevance Minimum Redundancy. Physical
Sciences, 88(1), pp. 129-136.
Touw, W. G., Joosten, R. P., And Vriend, G. (2015).
Detection of trans–cis flips and peptide-plane flips in
protein structures. Biological Crystallography, 71(8).
Touw, W. G., Baakman, C., Black, J., te Beek, T. A.,
Krieger, E., Joosten, R. P., And Vriend, G. (2014). A
series of PDB-related databanks for everyday needs.
Nucleic acids research, 43(D1), pp. 364-368.
Tripathy, R., Mishra, D., Konkimalla, V. B., And Nayak, R.
K. (2018). A computational approach for mining
cholesterol and their potential target against GPCR
seven helices based on spectral clustering and fuzzy c-
means algorithms. Journal of Intelligent and Fuzzy
Systems, pp. 1-10.
Van Beusekom, B., Lütteke, T., And Joosten, R. P. (2018).
Making glycoproteins a little bit sweeter with PDB-
REDO. Acta Crystallographica Section F: Structural
Biology Communications, 74(8).
Vignesh, U., And Parvathi, R. (2018). 3D visualization and
cluster analysis of unstructured protein sequences using
ARCSA with a file conversion approach. The Journal
of Supercomputing, 1-15.
Wang, R.Y. and Strong, D.M. (1996), Beyond accuracy:
what data quality means to data consumers. Journal of
Management Information Systems, 12(4), pp. 5-34.
Quality Management for Big 3D Data Analytics: A Case Study of Protein Data Bank
293