
REFERENCES 
Abriata,  L.  A.  (2016).  Structural  database  resources  for 
biological  macromolecules.  Briefings  in 
bioinformatics, 18(4), 659-669. 
Aydin, Z., Kaynar, O., Görmez, Y., And Işik, Y. E. (2018). 
Comparison of machine learning classifiers for protein 
secondary structure prediction. 26th Signal Processing 
and Communications Applications Conference. 
Berman,  H.  M.,  Kleywegt,  G.  J.,  Nakamura,  H.,  And 
Markley, J. L. (2014). The Protein Data Bank archive 
as an open data resource. Journal of Computer-aided 
Molecular Design, 28(10), 1009-1014. 
Brandon, C. J., Martin, B. P., McGee, K. J., Stewart, J. J., 
And Braun-Sand, S. B. (2015). An approach to creating 
a more realistic working model from a protein data bank 
entry. Journal of molecular modeling, 21(1). 
Chen, Z., Zhao, P., Li, F., Leier, A., Marquez-Lago, T. T., 
Wang,  Y.,  and  Song,  J.  (2018).  iFeature:  a  python 
package  and  web  server  for  features  extraction  and 
selection  from  protein  and  peptide  sequences. 
Bioinformatics. 
Corral-Corral,  R.,  Chavez,  E.,  And  Del  Rio,  G.  (2015). 
Machine learnable fold space representation based on 
residue  cluster  classes.  Computational  Biology  and 
Chemistry, 59, pp. 1-7. 
Correa, L., Borguesan, B., Farfán, C., Inostroza-Ponta, M., 
And Dorn, M. (2018). A Memetic Algorithm for 3D 
Protein  Structure  Prediction  Problem.  IEEE/ACM 
transactions  on  computational  biology  and 
bioinformatics, 15(3), 690-704. 
Crivellaro, A., Rad, M., Verdie, Y., Yi, K. M., Fua, P., And 
Lepetit,  V.  (2018).  Robust  3D  object  tracking  from 
monocular  images  using  stable  parts.  IEEE 
Transactions  on  Pattern  Analysis  and  Machine 
Intelligence, 40(6), pp. 1465-1479. 
Dai,  A.,  Nießner,  M.,  Zollhöfer,  M.,  Izadi,  S.,  And 
Theobalt, C. (2017). Bundlefusion: Real-time globally 
consistent  3d  reconstruction  using  on-the-fly  surface 
reintegration. ACM Transactions on Graphics, 36(4). 
Dapkūnas,  J.,  Timinskas,  A.,  Olechnovič,  K., 
Margelevičius,  M.,  Dičiūnas,  R.,  And  Venclovas,  Č. 
(2017). The PPI3D web server for searching, analyzing 
and  modeling  protein–protein  interactions  in  the 
context of 3D structures. Bioinformatics, 33(6). 
Frappier,  V.,  Duran,  M.,  And  Keating,  A.  E.  (2018). 
PixelDB:  Protein–peptide  complexes  annotated  with 
structural  conservation  of  the  peptide  binding  mode. 
Protein Science, 27(1), pp. 276-285. 
Ge, M., Helfert, M. (2008), Effects of information quality 
on  inventory  management.  International  Journal  of 
Information Quality, 2(2), pp. 177-191. 
Ge,  M.,  Helfert,  M.  (2006),  A  Framework  to  Assess 
Decision  Quality  Using  Information  Quality 
Dimensions.  11th  International  Conference  on 
Information Quality, pp.455-466. 
Helfert,  M.,  Foley,  O.,  Ge,  M.,  Cappiello,  C.  (2009), 
Analysing the effect of security on information quality 
dimensions. 17th European Conference on Information 
Systems, pp.2785-2797, 2009. 
Joosten, R. P., Joosten, K., Cohen, S. X., Vriend, G., And 
Perrakis,  A.  (2011).  Automatic  rebuilding  and 
optimization  of  crystallographic  structures  in  the 
Protein Data Bank. Bioinformatics, 27(24). 
Joosten, R. P., Long, F., Murshudov, G. N., And Perrakis, 
A. (2014). The PDB_REDO server for macromolecular 
structure  model  optimization.  International  Union  of 
Crystallography, 1(4), 213-220. 
Kalaivani,  S.,  Ramyachitra,  D.,  And  Manikandan,  P. 
(2018).  K-means  Clustering:  An  Efficient  Algorithm 
for  Protein  Complex  Detection.  In  Progress  in 
Computing, Analytics and Networking, pp. 449-459. 
Li, Q., Li, W., Zhang, J., And Xu, Z. (2018). An improved 
k-nearest-neighbor method to diagnose breast cancer. 
Analyst. 
Lütteke, T., And Von Der Lieth, C. W. (2004). pdb-care 
(PDB  carbohydrate  residue  check):  a  program  to 
support annotation of complex carbohydrate structures 
in PDB files. BMC bioinformatics, 5(1). 
Palenzuela,  C.  L.  M.,  And  Pumera,  M.  (2018).  (Bio) 
Analytical chemistry enabled by 3D printing: Sensors 
and biosensors. TrAC Trends in Analytical Chemistry. 
Quignot, C., Rey, J., Yu, J., Tufféry, P., Guerois, R., And 
Andreani, J. (2018). InterEvDock2: an expanded server 
for protein docking using evolutionary and biological 
information  from  homology  models  and  multimeric 
inputs. Nucleic acids research. 
Read, R. J., Adams, P. D., Arendall III, W. B., Brunger, A. 
T., Emsley, P., Joosten, R. P., and Perrakis, A. (2011). 
A new generation of crystallographic validation tools 
for the protein data bank. Structure, 19(10), 1395-1412. 
Tiwari,  A.  K.,  And  Srivastava,  R.  (2018).  An  Efficient 
Approach for Prediction of Nuclear Receptor and Their 
Subfamilies Based on Fuzzy k-Nearest Neighbor with 
Maximum Relevance Minimum Redundancy. Physical 
Sciences, 88(1), pp. 129-136. 
Touw,  W.  G.,  Joosten,  R.  P.,  And  Vriend,  G.  (2015). 
Detection of trans–cis flips and peptide-plane flips in 
protein structures. Biological Crystallography, 71(8). 
Touw,  W.  G.,  Baakman,  C.,  Black,  J.,  te  Beek,  T.  A., 
Krieger, E., Joosten, R. P., And Vriend, G. (2014). A 
series  of  PDB-related  databanks  for  everyday  needs. 
Nucleic acids research, 43(D1), pp. 364-368. 
Tripathy, R., Mishra, D., Konkimalla, V. B., And Nayak, R. 
K.  (2018).  A  computational  approach  for  mining 
cholesterol  and  their  potential  target  against  GPCR 
seven helices based on spectral clustering and fuzzy c-
means  algorithms.  Journal  of  Intelligent  and  Fuzzy 
Systems, pp. 1-10. 
Van Beusekom, B., Lütteke, T., And Joosten, R. P. (2018). 
Making  glycoproteins  a  little  bit  sweeter  with  PDB-
REDO.  Acta  Crystallographica  Section  F:  Structural 
Biology Communications, 74(8). 
Vignesh, U., And Parvathi, R. (2018). 3D visualization and 
cluster analysis of unstructured protein sequences using 
ARCSA with a file conversion approach. The Journal 
of Supercomputing, 1-15. 
Wang, R.Y. and Strong, D.M. (1996), Beyond accuracy: 
what data quality means to data consumers. Journal of 
Management Information Systems, 12(4), pp. 5-34. 
Quality Management for Big 3D Data Analytics: A Case Study of Protein Data Bank
293