achieving finer studies at individual vegetation
species scale and could therefore be complementary
to satellite imagery.
The fusion of multi-sensor satellite imagery could
be an interesting perspective for identification
accuracy enhancement (e.g. Zhang and Xie, 2014;
Alonso et al., 2014; Gintautas et al., 2018). The use
of an airborne hyperspectral of 16 and 64 bands and
0.7m and 0.5m of spatial resolution permits to
identify most of the species of interest, nevertheless,
some additional investigations must be carried to
improve the identification accuracy. Ground truth
samples must be enriched and rectified for some
specific species, the integration of vegetation indices
in the classification process could be tested (e.g.
Erudel et al., 2017; Launeau et al., 2017; Brabant et
al., 2018), the use of some pre-processing steps could
be taken into consideration for optimal data
processing (e.g. MNF).
ACKNOWLEDGEMENTS
This research was funded by CNES THEIA program
(CES artificialisation urbanisation). This work was
supported by public funds received in the framework
of GEOSUD, a project (ANR-10-EQPX-20) of the
program "Investissements d'Avenir" managed by the
French National Research Agency.
REFERENCES
Brabant, C., Alvarez-Vanhard, E., M.Galića., G.,
ThanhNguyen, K., Laribi, A., and Houet, T., 2018.
Evaluation of Dimensional Reduction Methods on
Urban Vegegation Classification Performance Using
Hyperspectral Data. In IGARSS 2018, IEEE
International Geoscience and Remote Sensing
Symposium, 1636-1639.
Green, A. A., Berman, M., Switzer, P., Craig, M. D., 1988.
A transformation for ordering multispectral data in
terms of image quality with implications for noise
removal. IEEE Trans. Geosci. Remote Sens., 26, 65–74.
Ouerghemmi, W., Gadal, S., Mozgeris, G., and
Jonikavičius, D., 2018a. Urban Vegetation Mapping by
Airborne Hyperspectral Imagery: Feasibility and
Limitations. In WHISPER 2018: 9th Workshop on
Hyperspectral Image and Signal Processing: Evolution
in Remote Sensing, Sep 2018, Amsterdam, Netherlands.
pp.245-249.
Mozgeris, G., Juodkienė, V., Jonikavičius, D., Straigytė, L.,
Gadal, S. and Ouerghemmi, W., 2018. Ultra-Light
Aircraft-Based Hyperspectral and Colour-Infrared
Imaging to Identify Deciduous Tree Species in an
Urban Environment. Remote Sensing, MDPI, 10 (10).
Kamal, M., Phinn, S., 2011. Hyperspectral data for
mangrove species mapping: a comparison of pixel-
based and object-based approach. Remote Sensing
3:2222–2242.
Ballanti, L.; Blesius, L.; Hines, E.; Kruse, B., 2016. Tree
Species Classification Using Hyperspectral Imagery: A
Comparison of Two Classifiers. Remote Sens., 8, 445.
Straigytė, L. and Vaidelys, L., 2012. Inventory of green
spaces and woody plants in the urban landscape in
Ariogala, South-East European Forestry, Vol. 3, no. 2,
pp. 115-121, 2012.
Vapnik, V. N., 1995. The Nature of Statistical Learning
Theory, New York: Springer-Verlag.
Matthew, M. W., Adler-Golden, S.M., Berk, A.,
Richtsmeier, S.C. and al., 2000. Status of Atmospheric
Correction Using a MODTRAN4-based Algorithm.
SPIE Proceedings, Algorithms for Multispectral,
Hyperspectral, and Ultraspectral Imagery VI. Vol.
4049, pp. 199-207.
Ganie, M. A., and Nusrath, A., 2016. Determining the
Vegetation Indices (NDVI) from Landsat 8 Satellite
Data. Int. J. of Adv. Res. 4 (8). 1459-1463, ISSN 2320-
5407.
Gao, B.C., 1996. NDWI - A normalized difference water
index for remote sensing of vegetation liquid water
from space. Remote Sensing of Environment
, 58, 257–
266.
Piragnolo, M., Lusiani, G., & Pirotti, F., 2018. Comparison
of vegetation indices from Rpas and Sentinel-2 imagery
for detecting permanent pastures. In ISPRS, Volume
XLII-3, 2018, pp.1381-1387.
Marais Sicre, C., Inglada, J., Fieuzal, R., Baup, F., Valero,
S., Cros, J., Huc, M., and Demarez, V., 2016. Early
Detection of Summer Crops Using High Spatial
Resolution Optical Image Time Series. Remote Sens.
2016, 8, 591.
Zhang, C. and Xie, Z., 2013. Object-based vegetation
mapping in the Kissimmee River watershed using
HyMap data and machine learning techniques,
Wetlands 2013, 33, 233–244.
Fassnacht, F. E., Neumann, C., Förster, M., Buddenbaum,
H., Ghosh, A., Clasen, A., Joshi, P. K., Koch, B., 2014.
Comparison of feature reduction algorithms for
classifying tree species with hyperspectral data on three
central European test sites. IEEE J. Sel. Top, in Appl.
Earth Obs. Remote Sens. 7 (6), 2547–2561.
Ouerghemmi, W., Gadal, S., Mozgeris. G., 2018b. Urban
Vegetation Mapping using Hyperspectral Imagery and
Spectral Library. In IEEE International Geoscience and
Remote Sensing Symposium (IGARSS) 2018, Jul 2018,
Valencia, Spain. pp.1632-1635.
Mozgeris, G., Gadal, S., Jonikavičius, D., Straigytė, L.,
Ouerghemmi, W. and Juodkienė, V., 2016.
Hyperspectral and color infrared imaging from
ultralight aircraft: Potential to recognize tree species in
urban environments In 2016 8th Workshop on
Hyperspectral Image and Signal Processing: Evolution
in Remote Sensing (WHISPERS), Los Angeles, CA, pp.
1-5.
Zhang, C. and Xie, Z., 2014. Data fusion and classifier en-