are usually virtually zero on highways. For steep in-
clines the street class can be neglected but the slope
plays a significant role. As these examples demon-
strate, subspaces may play a vital role in detecting dif-
ferent environmental scenarios and, therefore, these
subspaces will be investigated by utilizing projective
clustering algorithms, e.g. K-Means with Splitting
and Merging (KSM). Experiments with the KSM will
also include clustering with only a few clusters to
investigate the most distinctive features. A low k
should result in a distinction of the most separating
subspaces. These will be investigated further.
REFERENCES
Albrecht, M. and Holz
¨
apfel, M. (2018). Vorausschauend
effizient fahren mit dem elektronischen co-piloten.
ATZextra, 23(5):34–37.
Amersbach, C. and Winner, H. (2017). Functional decom-
position: An approach to reduce the approval effort
for highly automated driving. In 8. Tagung Fahreras-
sistenz, M
¨
unchen.
Bach, J., Otten, S., Holz
¨
apfel, M., and Sax, E. (2017).
Reactive-replay approach for verification and valida-
tion of closed-loop control systems in early develop-
ment. In SAE Technical Paper 2017-01-1671.
Bagschik, G., Menzel, T., Reschka, A., and Maurer, M.
(2017). Szenarien f
¨
ur entwicklung, absicherung und
test von automatisierten fahrzeugen. In 11. Work-
shop Fahrerassistenzsysteme. Hrsg. von Uni-DAS e. V,
pages 125–135.
Christiansen, M. (2015). 5komma6 - mercedes-
benz: In-geheimer-mission-auf-abnahmefahrt-mit-
der-neuen-mercedes-e-klasse-w213.
de Gelder, E. and Paardekooper, J.-P. (2017). Assessment
of automated driving systems using real-life scenarios.
In Intelligent Vehicles Symposium (IV), 2017 IEEE,
pages 589–594. IEEE.
Deppe, P. (2009). Mercedes-benz passion: Mercedes-benz-
praesentiert-in-genf-limousine-und-coupe-der-neuen-
e-klasse.
Elrofai, H., Worm, D., and den Camp, O. O. (2016). Sce-
nario identification for validation of automated driving
functions. In Advanced Microsystems for Automotive
Applications 2016, pages 153–163. Springer.
Gerdes, A. (2006). Automatic maneuver recognition in the
automobile: the fusion of uncertain sensor values us-
ing bayesian models. In Proc. 3rd International Work-
shop on Intelligent Transportation.
Henzel, M., Winner, H., and Lattke, B. (2017). Heraus-
forderungen in der absicherung von fahrerassisten-
zsystemen bei der benutzung maschinell gelernter und
lernender algorithmen. UNI DAS eV (eds.), 11:136–
148.
H
¨
ulnhagen, T., Dengler, I., Tamke, A., Dang, T., and
Breuel, G. (2010). Maneuver recognition using prob-
abilistic finite-state machines and fuzzy logic. In In-
telligent vehicles symposium (IV), 2010 IEEE, pages
65–70. IEEE.
ISO, I. (2011). 26262: Road vehicles-functional safety. In-
ternational Standard ISO/FDIS, 26262.
Junietz, P., Schneider, J., and Winner, H. (2017). Metrik
zur bewertung der kritikalit
¨
at von verkehrssituationen
und-szenarien. In 11. Workshop Fahrerassistenzsys-
teme.
Kaufman, L. and Rousseeuw, P. J. (2009). Finding groups
in data: an introduction to cluster analysis, volume
344. John Wiley & Sons.
Ketchen, D. J. and Shook, C. L. (1996). The application of
cluster analysis in strategic management research: an
analysis and critique. Strategic management journal,
17(6):441–458.
Langner, J., Bach, J., Otten, S., Sax, E., and Holz
¨
apfel, M.
(2017). Framework for using real driving data in au-
tomotive feature development and validation. In 8.
Tagung Fahrerassistenz, M
¨
unchen.
Langner, J., Bach, J., Ries, L., Otten, S., Holz
¨
apfel, M., and
Sax, E. (2018). Estimating the uniqueness of test sce-
narios derived from recorded real-world-driving-data
using autoencoders. In 2018 IEEE Intelligent Vehicles
Symposium (IV), pages 1860–1866. IEEE.
Minnerup, P., Kessler, T., and Knoll, A. (2015). Collect-
ing simulation scenarios by analyzing physical test
drives. In Intelligent Transportation Systems (ITSC),
2015 IEEE 18th International Conference on, pages
2915–2920. IEEE.
P
¨
utz, A., Zlocki, A., and Eckstein, L. (2016). Absicherung
hochautomatisierter fahrfunktionen mithilfe einer
datenbank relevanter szenarien.
Schuldt, F., Saust, F., Lichte, B., Maurer, M., and Scholz, S.
(2013). Effiziente systematische testgenerierung f
¨
ur
fahrerassistenzsysteme in virtuellen umgebungen. Au-
tomatisierungssysteme, Assistenzsysteme und Einge-
bettete Systeme F
¨
ur Transportmittel.
Steimle, M., Bagschik, G., Menzel, T., Wendler, J. T.,
and Maurer, M. (2018). Ein beitrag zur termi-
nologie f
¨
ur den szenarienbasierten testansatz automa-
tisierter fahrfunktionen. AAET-Automatisiertes und
vernetztes Fahren. Hrsg. von ITS Niedersachsen,(zur
Ver
¨
offentlichung angenommen).
Wachenfeld, W. and Winner, H. (2016). The release of au-
tonomous vehicles. In Autonomous Driving, pages
425–449. Springer.
Wang, W., Ramesh, A., and Zhao, D. (2018). Clustering
of driving scenarios using connected vehicle datasets.
arXiv preprint arXiv:1807.08415.
Zofka, M. R., Kuhnt, F., Kohlhaas, R., Rist, C., Schamm,
T., and Z
¨
ollner, J. M. (2015). Data-driven simulation
and parametrization of traffic scenarios for the devel-
opment of advanced driver assistance systems. In In-
formation Fusion (Fusion), 2015 18th International
Conference on, pages 1422–1428. IEEE.
Logical Scenario Derivation by Clustering Dynamic-Length-Segments Extracted from Real-World-Driving-Data
467