3717 NIR images. In the future, we will look into
using the combination of different deep learning
based object classification techniques and well-
known classification techniques.
REFERENCES
IBM Smarter Cities Public Safety, (2012). Law
Enforcement.
European Road Safety Observatory (ERSO), (2015). Cell
phone use while driving, https://ec.europa.eu/transport/
road_safety/erso-synthesis-2015-cellphone-
detail_en.pdf.
World Health Organization (WHO), (2017). “Save Lives-a
Road Safety Technical Package”, http://www.who.int/,
2017.
Strategic Highway Research Program (SHRP2), (2006-
2015).http://www.trb.org/StrategicHighwayResearchP
rogram2SHRP2/ Blank2.aspx.
Artan, Y., Bulan, O., Loce, R. P.,Paul, P., (2014) Driver
Cell Phone Usage Detection From HOV/HOTNIR
Images, In IEEE Conf. on Comp. Vis. Pat. Rec.
Berri, R. A., Silva, A. G., Parpinelli, R. S.., Girardi, E.,
Arthur, R., (2014). A Pattern Recognition System for
Detecting Use of Mobile Phones While Driving, In
arXiv:1408.0680v1.
Elings, J.W., (2018). Driver Handheld Cell Phone Usage
Detection, Utrecht Univ. M.S. Thesis.
Seshadri, K., Juefei-Xu, F., Pal, D. K., Savvides, M., Thor,
C., (2015). Driver Cell Phone Usage Detection on
Strategic Highway Research Program (shrp2) Face
View Videos, In Proc. IEEE Conf. CVPRW, pp. 35-4.
Le, T. H. N., Zheng,Y., Zhu, C., Luu, K. and Savvides, M.,
(2016). Multiple Scale Faster-RCNN Approach to
Driver’s Cell-phone Usage and Hands on Steering
Wheel Detection, in CVPR.
Zhou, B., et al., (2017). Seat Belt Detection Using
Convolutional Neural Network Bn-Alexnet, pp.384-
395, in ICIC.
Elihos, A., Balci, B., Alkan, B., Artan, Y., (2018).
Comparison of Image Classification and Object
Detection for Passenger Seat Belt Violation Detection
Using NIR & RGB Surveillance Camera Images, in
AVSS.
Bojarski, M., Desta, D., Drawokovski, D., Firner, B., Flepp,
B., Goyal, P., Jackel, L., Monfort, M., Muller, U.,
Zhang, J., Zhang, X., Zhao, J., Zieba, K., (2016). End-
to-end deep learning for self driving cars, In arxiv
Preprint arxiv:1604:07316.
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S.,
Fu, C., Berg, A., (2016). Ssd: Single shot multibox
detector, In European Conference on Computer Vision,
pp. 21–37. Springer.
Redmon, J. , Divvala, S., Girshick, R., Farhadi, A., (2016).
You only look once: Unified real time object detection,
In IEEE CVPR, pp. 779-787.
Ren, S., He, K., Girschick, R., (2015). Faster R-CNN:
towards real-time object detection with region proposal
networks, In NIPS.
Huang, J., Rathod, V., Sun, C., Zhu, M., Korattika, A.,
Fathi, A., Fischer, I., Wojna, Z., Song, Y., Guadarrama,
S., Murphy, K., (2017). Speed/accuracy trade-offs for
modern convolutional object detectors, in arXiv:
1611.10012v3.
Deng, J., Dong, W., Socher, R., Li, L., Li, K., Fei-Fei, L.,
(2009). Imagenet: A large-scale hierkarchical image
database, in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 248–
255.
Simonyan, K., X Zisserman, V., (2014). Very Deep
Convolutional Networks for Large-Scale Image
Recognition, In arXiv:1409.1556.
Perronnin, F., Sanchez, J., Mensink, T., (2010). “Improving
Fisher Kernels for Large-Scale Image Classification,”
in ECCV.
Kingma, D. and J. Ba (2014). Adam: A method for
stochastic optimization. arXiv preprint
arXiv:1412.6980.
Xiong, X. and Torr, F. De la, (2013). Supervised Descent
Method and its Application to Face Alignment. In IEEE
Conference on Computer Vision and Pattern
Recognition (CVPR), pages 532–539.
Cortes, C., and Vapnik, V., (1995). Support-Vector
Networks. Machine Learning, 20(3):273–297.
Das, N., Ohn-Bar, E. and Trived, M.M , (2015). On
performance evaluation of driver hand detection
algorithms: Challenges, dataset, and metrics. In Conf.
on ITS.
Schapire, R.E and Singer, Y., (1999). Improved Boosting
Algorithms Using Confidence-rated Predictions.
Machine Learning, 37(3):297–336.
VEHITS 2019 - 5th International Conference on Vehicle Technology and Intelligent Transport Systems
474