Amoui, M., Salehie, M., and Tahvildari, L. (2009). Tempo-
ral software change prediction using neural networks.
International Journal of Software Engineering and
Knowledge Engineering, 19(07):995–1014.
Bansal, A. (2017). Empirical analysis of search based algo-
rithms to identify change prone classes of open source
software. Computer Languages, Systems & Struc-
tures, 47:211–231.
Ben-Gal, I. (2005). Outlier Detection, pages 131–146.
Springer US, Boston, MA.
Catolino, G., Palomba, F., Lucia, A. D., Ferrucci, F., and
Zaidman, A. (2018). Enhancing change prediction
models using developer-related factors. Journal of
Systems and Software, 143:14 – 28.
Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer,
W. P. (2002). Smote: Synthetic minority over-
sampling technique. Journal of Artificial Intelligence
Research, 16:321–357.
Chen, T. and Guestrin, C. (2016). Xgboost: A scalable tree
boosting system. CoRR, abs/1603.02754.
Chidamber, S. and Kemerer, C. (1994). A metrics suite for
object oriented design. IEEE Transaction on Software
Engineering, 20(6).
Elish, M., Aljamaan, H., and Ahmad, I. (2015). Three em-
pirical studies on predicting software maintainability
using ensemble methods. Soft Computing, 19.
Elish, M. O. and Al-Rahman Al-Khiaty, M. (2013). A
suite of metrics for quantifying historical changes to
predict future change-prone classes in object-oriented
software. Journal of Software: Evolution and Process,
25(5):407–437.
Fernandez, A., Lpez, V., Galar, M., del Jesus, M. J., and
Herrera, F. (2013). Analysing the classification of im-
balanced data-sets with multiple classes: Binarization
techniques and ad-hoc approaches. Knowledge-Based
Systems, 42:97 – 110.
Han, J., Kamber, M., and Pei, J. (2012). Data Mining: Con-
cepts and Techniques. Morgan Kaufman, 3rd edition
edition.
He, H., Bai, Y., Garcia, E. A., and Li, S. (2008). Adasyn:
Adaptive synthetic sampling approach for imbalanced
learning. In 2008 IEEE International Joint Confer-
ence on Neural Networks (IEEE World Congress on
Computational Intelligence), pages 1322–1328.
Hsu, C.-W., Chang, C.-C., and Lin, C.-J. (2016). A practical
guide to support vector classification.
James, G., Witten, D., Hastie, T., and Tibshirani, R. (2013).
An Introduction to Statistical Learning with Applica-
tions in R. Springer.
Kaur, A., Kaur, K., and Jain, S. (2016). Predicting software
change-proneness with code smells and class imbal-
ance learning. In 2016 International Conference on
Advances in Computing, Communications and Infor-
matics (ICACCI), pages 746–754.
Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W.,
Ye, Q., and Liu, T.-Y. (2017). Lightgbm: A highly
efficient gradient boosting decision tree. In Advances
in Neural Information Processing Systems 30, pages
3146–3154. Curran Associates, Inc.
Khomh, F., Penta, M. D., and Gueheneuc, Y. (2009). An
exploratory study of the impact of code smells on soft-
ware change-proneness. In 2009 16th Working Con-
ference on Reverse Engineering, pages 75–84.
Koru, A. G. and Liu, H. (2007). Identifying and charac-
terizing change-prone classes in two large-scale open-
source products. Journal of Systems and Software,
80(1):63 – 73.
Lu, H., Zhou, Y., Xu, B., Leung, H., and Chen, L.
(2012). The ability of object-oriented metrics to pre-
dict change-proneness: a meta-analysis. Empirical
Software Engineering, 17(3).
Malhotra, R. and Khanna, M. (2014). Examining the effec-
tiveness of machine learning algorithms for prediction
of change prone classes. In 2014 International Con-
ference on High Performance Computing Simulation
(HPCS), pages 635–642.
McCabe, T. J. (1976). A complexity measure. IEEE Trans-
action on Software Engineering.
Posnett, D., Bird, C., and D
´
evanbu, P. (2011). An em-
pirical study on the influence of pattern roles on
change-proneness. Empirical Software Engineering,
16(3):396–423.
Runeson, P. and H
¨
ost, M. (2009). Guidelines for conduct-
ing and reporting case study research in software engi-
neering. Empirical software engineering, 14(2):131–
164.
Sandve, G. K., Nekrutenko, A., Taylor, J., and Hovig,
E. (2013). Ten simple rules for reproducible com-
putational research. PLOS Computational Biology,
9(10):1–4.
Singh, P., Singh, S., and Kaur, J. (2013). Tool for generating
code metrics for c# source code using abstract syntax
tree technique. ACM SIGSOFT Software Engineering
Notes, 38:1–6.
Tomek, I. (1976). Two modifications of cnn. IEEE Trans.
Systems, Man and Cybernetics, 6:769–772.
van Koten, C. and Gray, A. R. (2006). An application of
bayesian network for predicting object-oriented soft-
ware maintainability. Inf. Softw. Technol., 48(1):59–
67.
Vluymans, S., Fern
´
andez, A., Saeys, Y., Cornelis, C., and
Herrera, F. (2017). Dynamic affinity-based classifica-
tion of multi-class imbalanced data with one-versus-
one decomposition: a fuzzy rough set approach.
Knowledge and Information Systems, pages 1–30.
Wilson, D. L. (1972). Asymptotic properties of nearest
neighbor rules using edited data. IEEE Transactions
on Systems, Man, and Cybernetics, SMC-2(3):408–
421.
Zhou, Y., Leung, H., and Xu, B. (2009). Examining the po-
tentially confounding effect of class size on the asso-
ciations between object-oriented metrics and change-
proneness. IEEE Transactions on Software Engineer-
ing, 35(5):607–623.
ICEIS 2019 - 21st International Conference on Enterprise Information Systems
276