Nicolas Damay for his remarkable Master’s degree in-
ternship work.
REFERENCES
Chin, Y. K., Kow, W. Y., Khong, W. L., Tan, M. K., and
Teo, K. T. K. (2012). Q-learning traffic signal opti-
mization within multiple intersections traffic network.
In 2012 Sixth UKSim/AMSS European Symposium on
Computer Modeling and Simulation, pages 343–348.
Chu, L., Liu, H. X., Oh, J.-S., and Recker, W. (2003).
A calibration procedure for microscopic traffic sim-
ulation. In Proceedings of the 2003 IEEE Interna-
tional Conference on Intelligent Transportation Sys-
tems, volume 2, pages 1574–1579 vol.2.
Damay, N. (2015). Multiple-objective optimization of traf-
fic lightsusing a genetic algorithm and a microscopic
traffic simulator. Master’s thesis, KTH, School of
Computer Science and Communication (CSC).
Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002).
A fast and elitist multiobjective genetic algorithm:
Nsga-ii. IEEE Transactions on Evolutionary Compu-
tation, 6(2):182–197.
Eiben, A. and Smith, J. (2003). Introduction to Evo-
lutionary Computation. Natural Computing Series.
Springer.
Fakult
¨
at, S. R. A. L. U. F. (2006). Learning road traffic
control : Towards practical traffic control using policy
gradients diplomarbeit.
Flotterod, G., Bierlaire, M., and Nagel, K. (2011). Bayesian
demand calibration for dynamic traffic simulations.
Transportation Science, 45(4):541–561.
Fortin, F.-A., De Rainville, F.-M., Gardner, M.-A., Parizeau,
M., and Gagn
´
e, C. (2012). DEAP: Evolutionary algo-
rithms made easy. Journal of Machine Learning Re-
search, 13:2171–2175.
Foy, M. D., F., B. R., and Goldberg, D. E. Signal timing
determination using genetic algorithms.
Garc
´
ıa-Nieto, J., Alba, E., and Olivera, A. C. (2011).
Enhancing the urban road traffic with swarm intel-
ligence: A case study of c
´
ordoba city downtown.
In 2011 11th International Conference on Intelligent
Systems Design and Applications, pages 368–373.
Garc
´
ıa-Nieto, J., Olivera, A. C., and Alba, E. (2013). Opti-
mal cycle program of traffic lights with particle swarm
optimization. IEEE Transactions on Evolutionary
Computation, 17(6):823–839.
Goldberg, D. E. (1989). Genetic Algorithms in Search, Op-
timization, and Machine Learning. Addison-Wesley,
New York.
Hu, W., Wang, H., Liping, Y., and Du, B. (2015). A swarm
intelligent method for traffic light scheduling: appli-
cation to real urban traffic networks. Applied Intelli-
gence, 44.
Jin, J. and Ma, X. (2014). Implementation and optimiza-
tion of group-based signal control in traffic simula-
tion. pages 2517–2522.
Jin, J., Ma, X., and Kosonen, I. (2017). A stochastic op-
timization framework for road traffic controls based
on evolutionary algorithms and traffic simulation. Ad-
vances in Engineering Software, 114.
Krajzewicz, D., Erdmann, J., Behrisch, M., and Bieker-
Walz, L. (2012). Recent development and applications
of sumo - simulation of urban mobility. International
Journal On Advances in Systems and Measurements,
3 and 4.
Marceau Caron, G. (2014). Optimization and uncertainty
handling in air traffic management. PhD thesis. Th
`
ese
de doctorat dirig
´
ee par Schoenauer, Marc et Sav
´
eant,
Pierre Informatique Paris 11 2014.
Marsetic, R., Semrov, D., and Zura, M. (2014). Road artery
traffic light optimization with use of the reinforcement
learning. PROMET - Traffic and Transportation, 26.
Paz, A., Molano, V., and Sanchez-Medina, J. (2015). Holis-
tic Calibration of Microscopic Traffic Flow Models:
Methodology and Real World Application Studies,
pages 33–52.
P
´
eres, M., Ruiz, G., Nesmachnow, S., and Olivera, A. C.
(2018). Multiobjective evolutionary optimization of
traffic flow and pollution in montevideo, uruguay. Ap-
plied Soft Computing, 70:472 – 485.
Rouphail, N., Park, B., and Sacks, J. (2000). Direct sig-
nal timing optimization: Strategy development and re-
sults. pages 195 – 206.
Salkham, A., Cunningham, R., Garg, A., and Cahill, V.
(2008). A collaborative reinforcement learning ap-
proach to urban traffic control optimization. In 2008
IEEE/WIC/ACM International Conference on Web In-
telligence and Intelligent Agent Technology, volume 2,
pages 560–566.
Sanchez-Medina, J., J. Gal
´
an Moreno, M., and Rubio, E.
(2008). Evolutionary Computation Applied to Urban
Traffic Optimization.
Semet, Y. and Schoenauer, M. (2006). On the Benefits of
Inoculation, an Example in Train Scheduling. In et al.,
M. C., editor, GECCO-2006, pages 1761–1768, Seat-
tle, United States. ACM Press.
Stevanovic, J., Stevanovic, A., Martin, P. T., and Bauer, T.
(2008). Stochastic optimization of traffic control and
transit priority settings in vissim. Transportation Re-
search Part C: Emerging Technologies, 16(3):332 –
349. Emerging Commercial Technologies.
Toledo, T. and Kolechkina, T. (2013). Estimation of dy-
namic origin–destination matrices using linear assign-
ment matrix approximations. Intelligent Transporta-
tion Systems, IEEE Transactions on, 14:618–626.
Zhang, Q. and Li, H. (2007). Moea/d: A multiob-
jective evolutionary algorithm based on decomposi-
tion. IEEE Transactions on Evolutionary Computa-
tion, 11(6):712–731.
Zitzler, E. and K
¨
unzli, S. (2004). Indicator-based selection
in multiobjective search. In PPSN.
Zitzler, E., Laumanns, M., and Thiele, L. (2001). Spea2:
Improving the strength pareto evolutionary algorithm.
Technical report.
VEHITS 2019 - 5th International Conference on Vehicle Technology and Intelligent Transport Systems
210