Chen, X., Xiang, S., Liu, C., and Pan, C. (2014). Vehicle
detection in satellite images by hybrid deep convolu-
tional neural networks. IEEE Geoscience and Remote
Sensing Letters, 11(10):1797–1801.
Cheng, M., Zhang, Z., Lin, W., and Torr, P. (2014). Bing:
Binarized normed gradients for objectness estimation
at 300fps. In 2014 IEEE Conference on Computer
Vision and Pattern Recognition, pages 3286–3293.
Dalal, N. and Triggs, B. (2005). Histograms of oriented gra-
dients for human detection. In 2005 IEEE Computer
Society Conference on Computer Vision and Pattern
Recognition (CVPR’05), volume 1, pages 886–893
vol. 1.
Experimental, D. I. U. (2018). Diux xview 2018 detection
challenge (http://xviewdataset.org).
LeCun, Y., Haffner, P., Bottou, L., and Bengio, Y. (1999).
Object recognition with gradient-based learning. In
Shape, Contour and Grouping in Computer Vision,
pages 319–, London, UK, UK. Springer-Verlag.
Maitra, M. K. (2011). Frequently asked questions
(faq) on groundwater - understanding the basics
(http://www.indiawaterportal.org/articles/frequently-
asked-questions-faq-groundwater-understanding-
basics).
Ministry of Water Resource, G. o. I. (2006a).
Census of minor irrigation schemes
(http://micensus.gov.in/censusmisch.html).
Ministry of Water Resource, G. o. I. (2006b).
Methodology of minor irrigation census
(http://micensus.gov.in/methodology.html).
Ministry of Water Resource, G. o. I. (2006c). National level
report - dugwell (http://micensus.gov.in/dugnat.html).
Qiu, S. (2017). Bbox-label-tool
(https://github.com/puzzledqs/bbox-label-tool).
Redmon, J., Divvala, S. K., Girshick, R. B., and Farhadi, A.
(2015). You only look once: Unified, real-time object
detection. CoRR, abs/1506.02640.
Redmon, J. and Farhadi, A. (2016). YOLO9000: better,
faster, stronger. CoRR, abs/1612.08242.
Redmon, J. and Farhadi, A. (2018). Yolov3: An incremental
improvement. CoRR, abs/1804.02767.
Ronacher, A. (2010). Flask (http://flask.pocoo.org/).
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bern-
stein, M., Berg, A. C., and Fei-Fei, L. (2015). Ima-
genet large scale visual recognition challenge. Int. J.
Comput. Vision, 115(3):211–252.
Vapnik, V. N. (1999). An overview of statistical learn-
ing theory. IEEE Transactions on Neural Networks,
10(5):988–999.
Viola, P. and Jones, M. (2001). Rapid object detection us-
ing a boosted cascade of simple features. In Proceed-
ings of the 2001 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition. CVPR
2001, volume 1, pages I–I.
Wu, H., Zhang, H., Zhang, J., and Xu, F. (2015). Fast air-
craft detection in satellite images based on convolu-
tional neural networks. In 2015 IEEE International
Conference on Image Processing (ICIP), pages 4210–
4214.
Zhang, L., Shi, Z., and Wu, J. (2015). A hierarchical oil
tank detector with deep surrounding features for high-
resolution optical satellite imagery. IEEE Journal of
Selected Topics in Applied Earth Observations and
Remote Sensing, 8(10):4895–4909.
Well Detection in Satellite Images using Convolutional Neural Networks
125