show the consequences of deviations of the
influencing variables on the target values.
Alternatively, critical values of the influencing
variables can be identified (Götze, et al, 2014; Götze,
et al, 2015).
The different steps within all levels of the process
model are connected among each other in form of
information flows and feedback loops and the results
of one step can be input of another one (Götze, et al,
2014).
A special challenge within the model is posed by
the division of the evaluation tasks and the related
formation of sub levels. It depends on the structure of
the evaluation object and different approaches for the
division are possible (for more information about the
possibilities see Götze, et al, 2014).
5 CONCLUSION
The presented procedure model enables a structured
analysis and evaluation of CPS and supports the
decision-making regarding the use of CPS. The
decomposition into sub levels fosters the
transparency of the evaluation. This is important,
especially because of the typical complexity of the
evaluation object. CPS consist of different elements
and various challenges for their evaluation exist. This
especially refers to the handling of the heterogeneous
life cycles of the elements and the data acquisition.
Thus, a division into partial problems seems to be
unavoidable.
As shown in chapter 4, various instruments can be
used within the different steps and partial problems.
Following studies should focalize on the
concretisation of the model and its steps. Therefore,
existing studies (e. g. Götze, et al, 2014), which focus
on other evaluation objects, can be used as a basis.
Additionally, a refinement of the instruments applied
to the model, like the net present value method, is
necessary. Such refinements, for instance, should
refer to the precise determination of CPS-related
benefits as well as the integration of replacement
decisions.
REFERENCES
Broy, M., 2010. Cyber-Physical Systems –
Wissenschaftliche Herausforderungen bei der
Entwicklung. In: Broy, M., Cyber-Physical Systems –
Innovation durch softwareintensive eingebettete
Systeme.
Braccini, A. M., Margherita, E. G., 2019. Exploring
Organizational Sustainability of Industry 4.0 under the
Triple Bottom Line: The Case of a Manufacturing
Company. In: Sustainability, Volume 11, Issue 1, pp. 36
ff.
Coyle, R.G., 1996. System Dynamics Modeling: A
Practical Approach. London.
Dhillon, B.S., 1989. Life Cycle Costing: Techniques,
Models and Applications. New York.
Drossel, G., Ihlenfeldt, S., Langer, T., Dumitresco, R.,
2018. Cyber-Physische Systeme – Forschen für die
digitale Fabrik. In: Neugebauer, R., Digitalisierung –
Schlüsseltechnologien für Wirtschaft & Gesellschaft.
Berlin Heidelberg, pp. 197–222).
Ehrlenspiel, K., Kiewert, A., Lindemann, U., 2007.
Kostengünstig Entwickeln und Konstruieren:
Kostenmanagement bei der integrierten
Produktentwicklung. Berlin, 6
th
edition.
Faßbender-Wynands, E., 2001. Umweltorientierte
Lebenszyklusrechnung: Instrument zur Unterstützung
des Umweltkostenmanagements. Wiesbaden.
Ferry, D. J. O., Flanagan, R., 1991. Life Cycle Costing: A
radical approach. Report 122 Construction Industry
Research and Information Association (CIRIA).
London.
Götze, U., Schmidt, A., Weber, T., 2010. Vorgehensmodell
zur Abbildung und Analyse des Lebenszykluserfolgs
von Werkstoffen – Konzeption und beispielhafte
Veranschaulichung. In: Materialwissenschaft und
Werkstofftechnik, Volume 41, Issue 6, pp. 464–475.
Götze, U., Hache, B., Schmidt, A., Weber, T., 2011.
Methodik zur kostenorientierten Bewertung von
Prozessketten der Werkstoffverarbeitung. In:
Materialwissenschaft und Werkstofftechnik, Volume
42, Issue 7, pp. 647–657.
Götze, U., Schmidt, A., Symmank, C., Kräusel, V.,
Rautenstrauch, A., 2014. Zur Analyse und Bewertung
von Produkt-Prozessketten-Kombinationen der
hybriden Produktion. In: Neugebauer, R.; Götze, U.;
Drossel, W.-G. (Hrsg.): Energetisch-wirtschaftliche
Bilanzierung – Diskussion der Ergebnisse des
Spitzentechnologieclusters eniPROD: 3.
Methodenband der Querschnittsarbeitsgruppe
"Energetisch-wirtschaftliche Bilanzierung" des
Spitzentechnologieclusters eniPROD, pp. 21–32.
Auerbach.
Götze, U. Northcott, D., Schuster, P., 2015. Investment
Appraisal – Methods and Models. Berlin, Heidelberg.
Herrmann, C., 2010. Ganzheitliches Life Cycle
Management. Berlin Heidelberg.
Hesse, W., Merbeth, G., Frölich, R., 1992. Software-
Entwicklung: Vorgehensmodelle, Projektführung,
Projektverwaltung. München.
Höft, U., 1992. Lebenszykluskonzepte – Grundlage für das
strategische Marketing- und Technologiemanagement.
Berlin.
International Performance Research Institute (IPRI), 2017.
IPRI-Pressemitteilung vom 02.02.2017 – IPRI-
Forschungsprojekt „Industrie 4.0 profitabel“ startet.
Stuttgart.