operator, the group comes down to the semigroup
action generated by the Renyi map. The complex
systems physics is therefore implied by the very
concept of real numbers, that addresses the
measurement problem.
According to Brouwer`s view, time is a primordial
intuition being the base of conscious life.
Mathematics is regarded to be the paradigm of self-
organization, i.e., an intellection of increasingly
complex features. In that respect, the basic structure
is the time continuum that is a categorical skeleton of
complex systems. The dynamical identity it implies is
unfolded by choice, similarly to one of Jungian
psychology whereby the natural number emerges to
be a timestamp (von Franz, 1974).
A complex description of nature following the
evolution of continuum is designed by fractal
geometry, wherewith time is established in terms of
multiresolution. Considering the statistics of
continuous signals, the wavelet domain hidden
Markov model has been proved tremendously useful
in a variety of applications (Crouse et al., 1998). It is
obtained in a manner of experimental mathematics,
elucidating the complex systems physics to be the
paradigmatic framework for such an activity.
Referring to Chaitin (1995, pp.156-159), one
concludes that another generation of mathematics has
come – aligned to the Brouwerian method.
ACKNOWLEDGEMENT
The authors acknowledge support by the Ministry of
Education, Science and Technological Development
of the Republic of Serbia through the projects OI
174014, OI 174012 and III 44006, also by the Joint
Japan-Serbia Center for the Promotion of Science and
Technology of the University in Belgrade and the Ito
Foundation for International Education Exchange.
REFERENCES
d`Alambert, J. 1754. Dimension, s.s. (Physique &
Géometrie). In: Encyclopédie, ou dictionnaire raisonné
des sciences, des arts et des métiers, par une société de
gens de lettres. Tome quatrième (pp.1009-1010),
Didert, D., d`Alambert, J. (Eds.), 1754. Briasson, Paris.
Antoniou I., Gustafson K., 1999. Wavelets and stochastic
processes. Mathematics and Computers in Simulation
49, 81-104.
Antoniou, I. E., Gustafson, K. E., 2000. The time operator
of wavelets. Chaos, Solitons and Fractals 11(3), 443-
452.
Antoniou, I., Misra, B., Suchanecki, Z., 2003. Time
Operator: Innovation and Complexity, John Wiley &
Sons, New York.
Bachelard, G., 1961. La poétique de l`espace, Les presses
universitaires de France, Paris.
Bell, J. L., 1998. A Primer of Infinitesimal Analysis,
Cambridge University Press, Cambridge.
Brouwer, L. E. J., 1907. Over de grondslagen der wiskunde,
Maas & van Suchtelen, Amsterdam-Leipzig. In: Tasić,
V., 2001. Mathematics and the Roots of Postmodern
Thought (p.46), Oxford University Press Inc., New
York.
Brouwer, L. E. J., 1924. Bewijs dat jedere volle functie
gelijkmatig continu is. KNAW Verslagen 33, 189-193.
In: From Brouwer to Hilbert: The Debate on the
Foundations of Mathematics in 1920s (pp.36-39),
Mancosu, P. (Ed.), 1998. Oxford University Press, New
York.
Brouwer, L. E. J., 1928. Intuitionistische Betrachtungen
über den Formalismus. KNAW Proceedings 31, 374-
379. In: From Brouwer to Hilbert: The Debate on the
Foundations of Mathematics in 1920s (p.41),
Mancosu, P. (Ed.), 1998. Oxford University Press, New
York.
Brouwer, L. E. J., 1929. Mathematik, Wissenschaft und
Sprache. Monatshefte der Mathematik und Physik
36(1), 153-164. In: From Brouwer to Hilbert: The
Debate on the Foundations of Mathematics in 1920s
(p.48), Mancosu, P. (Ed.), 1998. Oxford University
Press, New York.
Chaitin, G. J., 1995. Randomness in arithmetic and the
decline and fall of reductionism in pure mathematics.
Chaos, Solitons and Fractals 5(2), 143-159.
Crouse, M. C., Nowak, R. D., Baraniuk, R. G., 1998.
Wavelet-based statistical signal processing using
hidden Markov model. IEEE Transactions on Signal
Processing 46(4), 886-902.
Crutchfield, J. P., Young, K., 1990. Computation at the
onset of chaos. In: Complexity, Entropy, and the
Physics of Information (pp. 223-269), Zurek, W. (Ed.),
1990. Addison-Wesley, Massachusetts.
Daubechies, I., 1992. Ten Lectures on Wavelets, Society for
Industrial and Applied Mathematics, Philadelphia.
Farey, J. Sen., 1816. On a curious property of vulgar
fractions. Philosophical Magazine 47 (217), 385-386.
Florack, L., 1997. Image Structure, Springer, Dordecht.
Ford, L. R., 1938. Fractions. The American Mathematical
Monthly 45(9), 586-601.
von Franz, M.-L., 1974. Number and Time: Reflections
Leading toward a Unification of Depth Psychology and
Physics, Northwestern University Press, Evanston.
Glivenko, V., 1929. Sur quelque point de logique de M.
Brouwer. Académie Royale de Belgique, Bulletin 15,
183-188. In: From Brouwer to Hilbert: The Debate on
the Foundations of Mathematics in 1920s (pp. 301-
305), Mancosu, P. (Ed.), 1998. Oxford University
Press, New York.
Grassberger, P., 1986. Toward a quantitative theory of self-
generated complexity. International Journal of
Theoretical Physics 25(9), 907-938.
The Time Operator of Reals
83