REFERENCES
Atzeni, M. and Recupero, D. R. (2018). Deep learning and
sentiment analysis for human-robot interaction. In The
Semantic Web: ESWC 2018 Satellite Events - ESWC
2018 Satellite Events, Heraklion, Crete, Greece, June
3-7, 2018, Revised Selected Papers, pages 14–18.
Bi, Z., Yimin, Y., and Wei, Y. (2008). Hierarchical planning
approach for mobile robot navigation under the dy-
namic environment. In Industrial Informatics, 2008.
INDIN 2008. 6th IEEE International Conference on,
pages 372–376. IEEE.
Brand, M., Masuda, M., Wehner, N., and Yu, X.-H. (2010).
Ant colony optimization algorithm for robot path
planning. In Computer Design and Applications (IC-
CDA), 2010 International Conference on, volume 3,
pages V3–436. IEEE.
Chao, N., Liu, Y.-k., Xia, H., Ayodeji, A., and Bai, L.
(2018). Grid-based rrt for minimum dose walking
path-planning in complex radioactive environments.
Annals of Nuclear Energy, 115:73–82.
Contreras-Cruz, M. A., Ayala-Ramirez, V., and Hernandez-
Belmonte, U. H. (2015). Mobile robot path planning
using artificial bee colony and evolutionary program-
ming. Applied Soft Computing, 30:319–328.
Ducho
ˇ
n, F., Babinec, A., Kajan, M., Be
ˇ
no, P., Florek, M.,
Fico, T., and Juri
ˇ
sica, L. (2014). Path planning with
modified a star algorithm for a mobile robot. Procedia
Engineering, 96:59–69.
Fu, B., Chen, L., Zhou, Y., Zheng, D., Wei, Z., Dai, J., and
Pan, H. (2018). An improved a* algorithm for the
industrial robot path planning with high success rate
and short length. Robotics and Autonomous Systems.
Ge, S. S. and Cui, Y. J. (2000). New potential functions
for mobile robot path planning. IEEE Transactions on
robotics and automation, 16(5):615–620.
Goyal, J. K. and Nagla, K. (2014). A new approach of path
planning for mobile robots. In Advances in Comput-
ing, Communications and Informatics (ICACCI, 2014
International Conference on, pages 863–867. IEEE.
Guruji, A. K., Agarwal, H., and Parsediya, D. (2016). Time-
efficient a* algorithm for robot path planning. Proce-
dia Technology, 23:144–149.
Han, J. and Seo, Y. (2017). Mobile robot path planning with
surrounding point set and path improvement. Applied
Soft Computing, 57:35–47.
Hu, Y. and Yang, S. X. (2004). A knowledge based
genetic algorithm for path planning of a mobile
robot. In Robotics and Automation, 2004. Proceed-
ings. ICRA’04. 2004 IEEE International Conference
on, volume 5, pages 4350–4355. IEEE.
Huang, H.-C. and Tsai, C.-C. (2011). Global path planning
for autonomous robot navigation using hybrid meta-
heuristic ga-pso algorithm. In SICE Annual Confer-
ence (SICE), 2011 Proceedings of, pages 1338–1343.
IEEE.
Jan, G. E., Chang, K. Y., and Parberry, I. (2008).
Optimal path planning for mobile robot naviga-
tion. IEEE/ASME Transactions on mechatronics,
13(4):451–460.
Kala, R., Shukla, A., and Tiwari, R. (2011). Robotic
path planning in static environment using hierarchical
multi-neuron heuristic search and probability based
fitness. Neurocomputing, 74(14-15):2314–2335.
Lamini, C., Benhlima, S., and Elbekri, A. (2018). Ge-
netic algorithm based approach for autonomous mo-
bile robot path planning. Procedia Computer Science,
127:180–189.
LaValle, S. M. (2006). Planning algorithms. Cambridge
university press.
Leena, N. and Saju, K. (2014). A survey on path plan-
ning techniques for autonomous mobile robots. IOSR
Journal of Mechanical and Civil Engineering (IOSR-
JMCE), 8:76–79.
Liu, H., Xu, B., Lu, D., and Zhang, G. (2018). A path plan-
ning approach for crowd evacuation in buildings based
on improved artificial bee colony algorithm. Applied
Soft Computing.
Mac, T. T., Copot, C., Tran, D. T., and De Keyser, R. (2016).
Heuristic approaches in robot path planning: A sur-
vey. Robotics and Autonomous Systems, 86:13–28.
Montiel, O., Orozco-Rosas, U., and Sep
´
ulveda, R. (2015).
Path planning for mobile robots using bacterial po-
tential field for avoiding static and dynamic obstacles.
Expert Systems with Applications, 42(12):5177–5191.
Rintanen, J. (2006). Introduction to automated plan-
ning. Lecture notes of the AI planning course, Albert-
Ludwigs-University Freiburg.
Shiltagh, N. A. and Jalal, L. D. (2013). Optimal path
planning for intelligent mobile robot navigation us-
ing modified particle swarm optimization. Interna-
tional Journal of Engineering and Advanced Technol-
ogy, 2(4):260–267.
Shum, A., Morris, K., and Khajepour, A. (2015). Direction-
dependent optimal path planning for autonomous ve-
hicles. Robotics and Autonomous Systems, 70:202–
214.
Song, W., LI, H.-x., and ZHANG, Y.-n. (2016). Path plan-
ning of mobile robot based on genetic bee colony al-
gorithm. DEStech Transactions on Computer Science
and Engineering, 1(cmee).
Victerpaul, P., Saravanan, D., Janakiraman, S., and Pradeep,
J. (2017). Path planning of autonomous mobile robots:
A survey and comparison. Journal of Advanced Re-
search in Dynamical and Control Systems, 9:1535–
1565.
Wang, W., Zuo, L., and Xu, X. (2018). A learning-based
multi-rrt approach for robot path planning in narrow
passages. Journal of Intelligent & Robotic Systems,
90(1-2):81–100.
Zhang, Y., Gong, D.-w., and Zhang, J.-h. (2013). Robot
path planning in uncertain environment using multi-
objective particle swarm optimization. Neurocomput-
ing, 103:172–185.
ICINCO 2019 - 16th International Conference on Informatics in Control, Automation and Robotics
166