Machine Learning Approach for Live Migration Cost Prediction in VMware Environments

Mohamed Elsaid, Hazem Abbas, Christoph Meinel

2019

Abstract

Virtualization became a commonly used technology in datacenters during the last decade. Live migration is an essential feature in most of the clusters hypervisors. Live migration process has a cost that includes the migration time, downtime, IP network overhead, CPU overhead and power consumption. This migration cost cannot be ignored, however datacenter admins do live migration without expectations about the resultant cost. Several research papers have discussed this problem, however they could not provide a practical model that can be easily implemented for cost prediction in VMware environments. In this paper, we propose a machine learning approach for live migration cost prediction in VMware environments. The proposed approach is implemented as a VMware PowerCLI script that can be easily implemented and run in any vCenter Server Cluster to do data collection of previous migrations statistics, train the machine learning models and then predict live migration cost. Testing results show how the proposed framework can predict live migration time, network throughput and power consumption cost with accurate results and for different kinds of workloads. This helps datacenters admins to have better planning for their VMware environments live migrations.

Download


Paper Citation


in Harvard Style

Elsaid M., Abbas H. and Meinel C. (2019). Machine Learning Approach for Live Migration Cost Prediction in VMware Environments.In Proceedings of the 9th International Conference on Cloud Computing and Services Science - Volume 1: CLOSER, ISBN 978-989-758-365-0, pages 456-463. DOI: 10.5220/0007749204560463


in Bibtex Style

@conference{closer19,
author={Mohamed Elsaid and Hazem Abbas and Christoph Meinel},
title={Machine Learning Approach for Live Migration Cost Prediction in VMware Environments},
booktitle={Proceedings of the 9th International Conference on Cloud Computing and Services Science - Volume 1: CLOSER,},
year={2019},
pages={456-463},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0007749204560463},
isbn={978-989-758-365-0},
}


in EndNote Style

TY - CONF

JO - Proceedings of the 9th International Conference on Cloud Computing and Services Science - Volume 1: CLOSER,
TI - Machine Learning Approach for Live Migration Cost Prediction in VMware Environments
SN - 978-989-758-365-0
AU - Elsaid M.
AU - Abbas H.
AU - Meinel C.
PY - 2019
SP - 456
EP - 463
DO - 10.5220/0007749204560463