et al., 2015a) and automotive (Martinelli et al., 2017).
ACKNOWLEDGEMENTS
This work was partially supported by the H2020 EU
funded project NeCS [GA #675320], by the H2020
EU funded project C3ISP [GA #700294].
REFERENCES
apktool (2018). A tool for reverse engineering android
apk files. hhttps://ibotpeaches.github.io/Apktool/. Ac-
cessed: 2018-11-21.
Binder, R. V. (1994). Design for testability in object-
oriented systems. Commun. ACM, 37(9):87–101.
Canfora, G., Martinelli, F., Mercaldo, F., Nardone, V.,
Santone, A., and Visaggio, C. A. (2018). Leila: formal
tool for identifying mobile malicious behaviour. IEEE
Transactions on Software Engineering.
Canfora, G., Mercaldo, F., Moriano, G., and Visaggio,
C. A. (2015a). Composition-malware: building an-
droid malware at run time. In 2015 10th International
Conference on Availability, Reliability and Security,
pages 318–326. IEEE.
Canfora, G., Mercaldo, F., and Visaggio, C. A. (2015b).
Evaluating op-code frequency histograms in malware
and third-party mobile applications. In International
Conference on E-Business and Telecommunications,
pages 201–222. Springer.
Canfora, G., Mercaldo, F., and Visaggio, C. A. (2015c).
Mobile malware detection using op-code frequency
histograms. In SECRYPT, pages 27–38.
Canfora, G., Mercaldo, F., Visaggio, C. A., and Di Notte, P.
(2014). Metamorphic malware detection using code
metrics. Information Security Journal: A Global Per-
spective, 23(3):57–67.
Caruana, R. and Niculescu-Mizil, A. (2006). An empir-
ical comparison of supervised learning algorithms. In
Proceedings of the 23rd international conference on
Machine learning, pages 161–168. ACM.
Ceccarelli, M., Cerulo, L., and Santone, A. (2014). De
novo reconstruction of gene regulatory networks from
time series data, an approach based on formal meth-
ods. Methods, 69(3):298–305.
Chidamber, S. R. and Kemerer, C. F. (1994). A metrics
suite for object oriented design. IEEE Trans. Software
Eng., 20(6):476–493.
Cimitile, A., Martinelli, F., and Mercaldo, F. (2017). Ma-
chine learning meets ios malware: Identifying mali-
cious applications on apple environment. In ICISSP,
pages 487–492.
Fenton, N. E. and Neil, M. (2000). Software metrics:
roadmap. In Proceedings of the Conference on the Fu-
ture of Software Engineering, pages 357–370. ACM.
Hecht, G. (2015). An approach to detect android anti-
patterns. In Proceedings of the 37th International
Conference on Software Engineering-Volume 2, pages
766–768. IEEE Press.
Hecht, G., Rouvoy, R., Moha, N., and Duchien, L. (2015).
Detecting antipatterns in android apps. In Proceedings
of the Second ACM International Conference on Mo-
bile Software Engineering and Systems, pages 148–
149. IEEE Press.
Jo
ˇ
st, G., Huber, J., and Heri
ˇ
cko, M. (2013). Using object
oriented software metrics for mobile application de-
velopment. In Second Workshop on Software Quality
Analysis, Monitoring, Improvement and Applications
(SQAMIA 2013), pages 17–27.
Kechagia, M. and Spinellis, D. (2014). Undocumented
and unchecked: exceptions that spell trouble. In 11th
Working Conference on Mining Software Repositor-
ies, MSR 2014, Proceedings, May 31 - June 1, 2014,
Hyderabad, India, pages 312–315.
Maiorca, D., Mercaldo, F., Giacinto, G., Visaggio, C. A.,
and Martinelli, F. (2017). R-packdroid: Api
package-based characterization and detection of mo-
bile ransomware. In Proceedings of the symposium on
applied computing, pages 1718–1723. ACM.
Martinelli, F., Mercaldo, F., Nardone, V., and Santone, A.
(2017). Car hacking identification through fuzzy logic
algorithms.
McCabe, T. J. (1976). A complexity measure. IEEE Trans.
Software Eng., 2(4):308–320.
Mercaldo, F., Di Sorbo, A., Visaggio, C. A., Cimitile, A.,
and Martinelli, F. (2018). An exploratory study on
the evolution of android malware quality. Journal of
Software: Evolution and Process, page e1978.
Mercaldo, F., Nardone, V., Santone, A., and Visaggio, C.
(2016). Hey malware, i can find you! pages 261–262.
Rastogi, S., Bhushan, K., and Gupta, B. (2016). An-
droid applications repackaging detection techniques
for smartphone devices. Procedia Computer Science,
78:26–32.
Romesburg, C. (2004). Cluster analysis for researchers.
Lulu. com.
Ruvo, G., Nardone, V., Santone, A., Ceccarelli, M., and
Cerulo, L. (2015). Infer gene regulatory networks
from time series data with probabilistic model check-
ing. pages 26–32.
Santone, A., Vaglini, G., and Villani, M. (2013). Incre-
mental construction of systems: An efficient charac-
terization of the lacking sub-system. Science of Com-
puter Programming, 78(9):1346–1367.
(SATC), S. A. T. C. (1995). Software quality metrics for
object oriented environments.
Scandariato, R. and Walden, J. (2012). Predicting vulner-
able classes in an android application. In Proceedings
of the 4th international workshop on Security meas-
urements and metrics, pages 11–16. ACM.
Sharkley, J. Coding for life - battery life, that is. ht-
tps://dl.google.com/io/2009/pres/W 0300 Codingfor
Life-BatteryLifeThatIs.pdf. Accessed: 2015-11-07.
statcounter (2018). Mobile operating system market
share worldwide. http://gs.statcounter.com/os-market-
share/mobile/worldwide. Accessed: 2018-10-25.
statista (2018). Number of available applications in the
google play store from december 2009 to september
2018. https://tinyurl.com/zewltg5. Accessed: 2018-
10-25.
Investigating Mobile Applications Quality in Official and Third-party Marketplaces
177