things computing. IEEE Communications Magazine,
56(2):169–175.
Doshi, R., Apthorpe, N., and Feamster, N. (2018). Ma-
chine learning ddos detection for consumer internet of
things devices. pages 29–35.
Elsherif, A. (2018). Automatic intrusion detection sys-
tem using deep recurrent neural network paradigm.
Journal of Information Security and Cybercrimes Re-
search (JISCR), 1(1).
Evermann, J., Rehse, J.-R., and Fettke, P. (2017). Predict-
ing process behaviour using deep learning. Decision
Support Systems, 100:129–140.
Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep
learning. MIT Press, Cambridge, Massachusetts and
London, England.
Han, J., Pei, J., and Kamber, M. (2011). Data mining: con-
cepts and techniques. Elsevier.
Hinkka, M., Lehto, T., Heljanko, K., and Jung, A. (2018).
Classifying process instances using recurrent neural
networks. arXiv preprint arXiv:1809.05896.
Kong, Y., Shao, M., Li, K., and Fu, Y. (2018). Probabilis-
tic low-rank multitask learning. IEEE transactions
on neural networks and learning systems, 29(3):670–
680.
Kreps, J. (2014). Questioning the lambda architecture: The
lambda architecture has its merits, but alternatives are
worth exploring.
Larrinaga, F., Fernandez, J., Zugasti, E., Zurutuza, U.,
Anasagasti, M., and Mondragon, M. (2018). Imple-
mentation of a reference architecture for cyber physi-
cal systems to support condition based maintenance.
5th International Conference on Control, Decision
and Information Technologies, pages 773–778.
LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learn-
ing. Nature, 521(7553):436–444.
Luo, Y., Wen, Y., and Tao, D. (2018). Heterogeneous mul-
titask metric learning across multiple domains. IEEE
transactions on neural networks and learning systems,
29(9):4051–4064.
Nolle, T., Luettgen, S., Seeliger, A., and M
¨
uhlh
¨
auser, M.
(2018). Analyzing business process anomalies using
autoencoders. Machine Learning, pages 1–19.
Oxford Dictionaries (2019). anomaly.
Papazoglou, M., van den Heuvel, W.-J., and Mascolo, J.
(2015). Reference architecture and knowledge-based
structures for smart manufacturing networks. IEEE
Software.
Parnas, D. L. (1972). On the criteria to be used in decom-
posing systems into modules. Communications of the
ACM, 15(12):1053–1058.
Paula, E., Ladeira, M., Carvalho, R., and Marzagao, T.
(2016). Deep learning anomaly detection as sup-
port fraud investigation in brazilian exports and anti-
money laundering. In 15th IEEE International Con-
ference on Machine Learning and Applications, pages
954–960. IEEE.
Peffers, K., Rothenberger, M., Tuunanen, T., and Vaezi, R.
(2012). Design science research evaluation. Design
Science Research in Information Systems. Advances
in Theory and Practice, pages 398–410.
Prat, N., Comyn-Wattiau, I., and Akoka, J. (2015). A tax-
onomy of evaluation methods for information systems
artifacts. Journal of Management Information Sys-
tems, 32(3):229–267.
Radford, B. J., Richardson, B. D., and Davis, S. E. (2018).
Sequence aggregation rules for anomaly detection in
computer network traffic. CoRR, abs/1805.03735.
Revathi, A. R. and Kumar, D. (2017). An efficient system
for anomaly detection using deep learning classifier.
Signal, Image and Video Processing, 11(2):291–299.
Sadegh, N. (1993). A perceptron network for functional
identification and control of nonlinear systems. IEEE
transactions on neural networks, 4(6):982–988.
Sharafaldin, I., Lashkari, A. H., and Ghorbani, A. A.
(2018). Toward generating a new intrusion detec-
tion dataset and intrusion traffic characterization. In
ICISSP, pages 108–116.
Spangenberg, N., Augenstein, C., Franczyk, B., Wagner,
M., Apitz, M., and Kenngott, H. (2017a). Method for
intra-surgical phase detection by using real-time med-
ical device data. IEEE 30th International Symposium
on Computer-Based Medical Systems, pages 254–259.
Spangenberg, N., Wilke, M., Augenstein, C., and Franczyk,
B. (2017b). A big data architecture for intra-surgical
remaining time predictions. Procedia Computer Sci-
ence, 113:310–317.
Steffens, A., Lichter, H., and D
¨
oring, J. S. (2018). De-
signing a next-generation continuous software deliv-
ery system: Concepts and architecture. 2018 IEEE 4th
International Workshop on Rapid Continuous Soft-
ware Engineering, pages 1–7.
Tax, N., Verenich, I., La Rosa, M., and Dumas, M. (2017).
Predictive business process monitoring with lstm neu-
ral networks. International Conference on Advanced
Information Systems Engineering.
Thramboulidis, K., Vachtsevanou, D. C., and Solanos, A.
(2018). Cyber-physical microservices: An iot-based
framework for manufacturing systems. In IEEE In-
dustrial Cyber-Physical Systems (ICPS), pages 232–
239. IEEE.
Twinanda, A. P., Yengera, G., Mutter, D., Marescaux, J.,
and Padoy, N. (2018). Rsdnet: Learning to pre-
dict remaining surgery duration from laparoscopic
videos without manual annotations. arXiv preprint
arXiv:1802.03243.
Venable, J., Pries-Heje, J., and Baskerville, R. (2016). Feds:
a framework for evaluation in design science research.
European Jour. of Information Systems, 25(1):77–89.
Yang, M., Zhao, W., Xu, W., Feng, Y., Zhao, Z., Chen,
X., and Lei, K. (2018). Multitask learning for cross-
domain image captioning. IEEE Transactions on Mul-
timedia, page 1.
Zhou, C. and Paffenroth, R. C. (2017). Anomaly detection
with robust deep autoencoders. In Matwin, S., Yu,
S., and Farooq, F., editors, KDD2017, pages 665–674,
New York, NY. ACM.
ICEIS 2019 - 21st International Conference on Enterprise Information Systems
476