et al. (2016). Tensorflow: a system for large-scale
machine learning. In OSDI, volume 16, pages 265–
283.
Abadi, M., Isard, M., and Murray, D. G. (2017). A com-
putational model for tensorflow: an introduction. In
Proceedings of the 1st ACM SIGPLAN International
Workshop on Machine Learning and Programming
Languages, pages 1–7. ACM.
Albert, A. and Rajagopal, R. (2013). Smart meter
driven segmentation: What your consumption says
about you. IEEE Transactions on power systems,
28(4):4019–4030.
Arif, A., Al-Hussain, M., Al-Mutairi, N., Al-Ammar, E.,
Khan, Y., and Malik, N. (2013). Experimental study
and design of smart energy meter for the smart grid.
In 2013 International Renewable and Sustainable En-
ergy Conference (IRSEC), pages 515–520.
Beckel, C., Sadamori, L., Staake, T., and Santini, S. (2014).
Revealing household characteristics from smart meter
data. Energy, 78:397–410.
Benzi, F., Anglani, N., Bassi, E., and Frosini, L.
(2011). Electricity smart meters interfacing the house-
holds. IEEE Transactions on Industrial Electronics,
58(10):4487–4494.
Burkhart, S., Unterweger, A., Eibl, G., and Engel, D.
(2018). Detecting swimming pools in 15-minute
load data. In 17th IEEE International Confer-
ence On Trust, Security And Privacy In Computing
And Communications/12th IEEE International Con-
ference On Big Data Science And Engineering (Trust-
Com/BigDataSE), pages 1651–1655. IEEE.
Chen, D., Barker, S., Subbaswamy, A., Irwin, D., and
Shenoy, P. (2013). Non-intrusive occupancy monitor-
ing using smart meters. In Proceedings of the 5th ACM
Workshop on Embedded Systems For Energy-Efficient
Buildings, pages 1–8. ACM.
Chen, D., Irwin, D., Shenoy, P., Albrecht, J., et al. (2014).
Combined heat and privacy: Preventing occupancy
detection from smart meters. In 2014 IEEE Interna-
tional Conference on Pervasive Computing and Com-
munications (PerCom), pages 208–215. IEEE.
Chen, D., Kalra, S., Irwin, D., Shenoy, P., and Albrecht,
J. (2015). Preventing occupancy detection from smart
meters. IEEE Transactions on Smart Grid, 6(5):2426–
2434.
Chen, Z., Jiang, C., and Xie, L. (2018). Building occupancy
estimation and detection: A review. Energy and Build-
ings.
Christianto, A., Chen, P., Walawedura, O., Vuong, A.,
Feng, J., Wang, D., Spichkova, M., and Simic, M.
(2018). Enhancing the user experience with vertical
transportation solutions. Procedia computer science,
126:2075–2084.
Clunne-Kiely, L., Idicula, B., Payne, L., Ronggowarsito,
E., Spichkova, M., Simic, M., and Schmidt, H.
(2017). Modelling and implementation of humanoid
robot behaviour. In 21st International Conference on
Knowledge-Based and Intelligent Information & En-
gineering Systems, pages 2249–2258. Elsevier Sci-
ence Publishers BV.
Depuru, S. S. S. R., Wang, L., Devabhaktuni, V., and Gudi,
N. (2011). Smart meters for power grid. challenges, is-
sues, advantages and status. In 2011 IEEE/PES Power
Systems Conference and Exposition, pages 1–7. IEEE.
Ehrke, L. A., Nap, K. A., and Dresselhuys, D. R. (2003).
Electronic electric meter for networked meter reading.
US Patent 6,538,577.
Eibl, G., Burkhart, S., and Engel, D. (2018). Unsupervised
holiday detection from low-resolution smart metering
data. In 4th International Conference on Information
Systems Security and Privacy (ICISSP), pages 477–
486.
Eibl, G. and Engel, D. (2015). Influence of data granularity
on smart meter privacy. IEEE Transactions on Smart
Grid, 6(2):930–939.
Eibl, G., Engel, D., and Neureiter, C. (2015). Privacy-
relevant smart metering use cases. In Industrial Tech-
nology (ICIT), 2015 IEEE International Conference
on, pages 1387–1392. IEEE.
Gonzalez, R. C. and Woods, R. E. (2001). Digital Im-
age Processing. Addison-Wesley Longman Publish-
ing Co., Inc., 2nd edition.
Grady, B. D., Vaswani, R., and Pace, J. (2016). Method and
system of reading utility meter data over a network.
US Patent 9,464,917.
Jenney, W. P., Szydlowski, L. G., Ferguson, R. D., and
Potaczala, C. A. (1999). Automatic meter reading sys-
tem. US Patent 5,897,607.
Kelley, R. H., Carpenter, R. C., Lunney, R. H., and Mar-
tinez, M. (2000). Automated meter reading system.
US Patent 6,088,659.
Kleiminger, W., Beckel, C., Staake, T., and Santini, S.
(2013). Occupancy detection from electricity con-
sumption data. In Proceedings of the 5th ACM
Workshop on Embedded Systems For Energy-Efficient
Buildings, pages 1–8. ACM.
Knight, N. E. and Banks, D. M. (1998). Remote meter read-
ing system. US Patent 5,852,658.
Kuzlu, M., Pipattanasomporn, M., and Rahman, S.
(2014). Communication network requirements for
major smart grid applications in han, nan and wan.
Computer Networks, 67:74–88.
Masoudifar, N., Hammad, A., and Rezaee, M. (2014). Mon-
itoring occupancy and office equipment energy con-
sumption using real-time location system and wireless
energy meters. In Simulation Conference (WSC), 2014
Winter, pages 1108–1119. IEEE.
Michael, J., Cohn, A., and Butcher, J. (2018). Blockchain
technology. The Journal.
Nap, K. A., Ehrke, L. A., and Dresselhuys, D. R. (2001).
Automatic meter reading data communication system.
US Patent 6,246,677.
OpenCV (2018). Open source computer vision. https:
//docs.opencv.org/3.1.0.
Rathod, R. R. and Garg, R. D. (2016). Regional electricity
consumption analysis for consumers using data min-
ing techniques and consumer meter reading data. In-
ternational Journal of Electrical Power & Energy Sys-
tems, 78:368–374.
Sankar, L., Rajagopalan, S. R., and Mohajer, S. (2013).
Smart meter privacy: A theoretical framework. IEEE
Transactions on Smart Grid, 4(2):837–846.
Easy Mobile Meter Reading for Non-smart Meters: Comparison of AWS Rekognition and Google Cloud Vision Approaches
187