tion of dimensions, we introduced the notion of mul-
tivalued (temporal) paths, a variant of paths that, on
the one hand, enables a more in-depth understanding
of temporal networks without sacrificing semantic in-
tegrity, while on the other hand introducing several
new and interesting technical challenges, such as the
computation of multivalued-centrality measures for
temporal networks.
REFERENCES
Barbehenn, M. (1998). A note on the complexity of di-
jkstra’s algorithm for graphs with weighted vertices.
IEEE transactions on computers, 47(2):263.
Boccaletti, S., Bianconi, G., Criado, R., Del Genio, C. I.,
G
´
omez-Gardenes, J., Romance, M., Sendina-Nadal,
I., Wang, Z., and Zanin, M. (2014). The structure and
dynamics of multilayer networks. Physics Reports,
544(1):1–122.
Casteigts, A., Flocchini, P., Quattrociocchi, W., and San-
toro, N. (2012). Time-varying graphs and dynamic
networks. International Journal of Parallel, Emergent
and Distributed Systems, 27(5):387–408.
De Domenico, M., Sol
´
e-Ribalta, A., Cozzo, E., Kivel
¨
a, M.,
Moreno, Y., Porter, M. A., G
´
omez, S., and Arenas,
A. (2013). Mathematical formulation of multilayer
networks. Physical Review X, 3(4):041022.
Dickson, L. E. (1913). Finiteness of the odd perfect and
primitive abundant numbers with n distinct prime fac-
tors. American Journal of Mathematics, 35(4):413–
422.
Goranko, V. and Galton, A. (2015). Temporal logic. In
Zalta, E. N., editor, The Stanford Encyclopedia of Phi-
losophy. Metaphysics Research Lab, Stanford Univer-
sity, winter 2015 edition.
Goshtasby, A. A. (2012). Similarity and dissimilarity mea-
sures. In Image registration, pages 7–66. Springer.
Holme, P. and Saram
¨
aki, J. (2012). Temporal networks.
Physics reports, 519(3):97–125.
Kivel
¨
a, M., Arenas, A., Barthelemy, M., Gleeson, J. P.,
Moreno, Y., and Porter, M. A. (2014). Multilayer net-
works. Journal of complex networks, 2(3):203–271.
Markosian, N., Sullivan, M., and Emery, N. (2016). Time.
In Zalta, E. N., editor, The Stanford Encyclopedia
of Philosophy. Metaphysics Research Lab, Stanford
University, fall 2016 edition.
Matthews, S. G. (1994). Partial metric topology. Annals of
the New York Academy of Sciences, 728(1):183–197.
Michail, O. (2016). An introduction to temporal graphs:
An algorithmic perspective. Internet Mathematics,
12(4):239–280.
Runkler, T. A. (2012). Data Analytics. Springer.
Schroeder, V. (2006). Quasi-metric and metric spaces.
Conformal Geometry and Dynamics of the American
Mathematical Society, 10(18):355–360.
Segarra, S. and Ribeiro, A. (2016). Stability and continu-
ity of centrality measures in weighted graphs. IEEE
Transactions on Signal Processing, 64(3):543–555.
Sunitha, M. and Mathew, S. (2013). Fuzzy graph theory:
a survey. Annals of Pure and Applied mathematics,
4(1):92–110.
Tang, J., Musolesi, M., Mascolo, C., and Latora, V. (2009).
Temporal distance metrics for social network analysis.
In Proceedings of the 2nd ACM workshop on Online
social networks, pages 31–36. ACM.
Tarapata, Z. (2007). Selected multicriteria shortest path
problems: An analysis of complexity, models and
adaptation of standard algorithms. International Jour-
nal of Applied Mathematics and Computer Science,
17(2):269–287.
Taylor, D., Myers, S. A., Clauset, A., Porter, M. A., and
Mucha, P. J. (2017). Eigenvector-based centrality
measures for temporal networks. Multiscale Model-
ing & Simulation, 15(1):537–574.
Van Ditmarsch, H., van Der Hoek, W., and Kooi, B. (2007).
Dynamic epistemic logic, volume 337. Springer Sci-
ence & Business Media.
Venema, Y. (1998). Temporal logic. Citeseer.
Wu, H., Cheng, J., Huang, S., Ke, Y., Lu, Y., and Xu, Y.
(2014). Path problems in temporal graphs. Proceed-
ings of the VLDB Endowment, 7(9):721–732.
Zumbach, G. and M
¨
uller, U. (2001). Operators on inhomo-
geneous time series. International Journal of Theoret-
ical and Applied Finance, 4(01):147–177.
COMPLEXIS 2019 - 4th International Conference on Complexity, Future Information Systems and Risk
100