Hatvany, J. and Nemes, L. (1978) ‘Intelligent
Manufacturing Systems— A Tentative Forecast’, IFAC
Proceedings Volumes. Elsevier, 11(1), pp. 895–899.
doi: 10.1016/S1474-6670(17)66031-2.
Hermann, M., Pentek, T. and Otto, B. (2016) ‘Design
principles for industrie 4.0 scenarios’, Proceedings of
the Annual Hawaii International Conference on System
Sciences, 2016–March, pp. 3928–3937. doi:
10.1109/HICSS.2016.488.
Kagermann, H., Wahlster, W. and Helbig, J. (2013)
‘Recommendations for implementing the strategic
initiative INDUSTRIE 4.0: Final report of the Industrie
4.0 Working Group’, Final report of the Industrie 4.0
WG, (April), p. 82. doi: 10.13140/RG.2.2.14480.20485.
Kamdar, R., Paliwal, P. and Kumar, Y. (2018) ‘A State of
Art Review on Various Aspects of Multi-Agent
System’, Journal of Circuits, Systems and Computers,
27(11), p. 1830006. doi: 10.1142/S02181266183000
64.
Ko, T. et al. (2017) ‘Machine learning-based anomaly
detection via integration of manufacturing, inspection
and after-sales service data’, Industrial Management &
Data Systems, 117(5), pp. 927–945. doi:
10.1108/IMDS-06-2016-0195.
Li, F. (2012) ‘Study of Multi-Agent Based Integratable
Manufacturing Execution System Model’, Advanced
Materials Research. Trans Tech Publications, 366, pp.
268–271. doi: 10.4028/www.scientific.net/AMR.366.
268.
Liu, J.; Guo, J.; Orlik, P.V.; Shibata, M.; Nakahara, D.; Mii,
S.; Takac, M. (2018) Anomaly Detection in
Manufacturing Systems Using Structured Neural
Networks. Available at: https://www.merl.com/
publications/docs/TR2018-097.pdf.
Lu, S. C. Y. (1990) ‘Machine learning approaches to
knowledge synthesis and integration tasks for advanced
engineering automation’, Computers in Industry, 15(1–
2), pp. 105–120. doi: 10.1016/0166-3615(90)90088-7.
Madsen, O. and Møller, C. (2017) ‘The AAU Smart
Production Laboratory for Teaching and Research in
Emerging Digital Manufacturing Technologies’,
Procedia Manufacturing. The Author(s), 9, pp. 106–
112. doi: 10.1016/j.promfg.2017.04.036.
Mantravadi, S., Cheng, Y. and Møller, C. (2018)
‘MES/MOM systems for Manufacturing Networks : An
exploratory study from operations in India’, 22nd
Cambridge International Manufacturing Symposium,
(September), pp. 27–28.
Mantravadi, S. and Møller, C. (2019) ‘An Overview of
Next-generation Manufacturing Execution Systems :
How important is MES for Industry 4.0 ?’, Elsevier
Procedia Manufacturing.
Mantravadi, S., Moller, C. and Christensen, F. M. M.
(2018) ‘Perspectives on Real-Time Information
Sharing through Smart Factories: Visibility via
Enterprise Integration’, in 2018 International
Conference on Smart Systems and Technologies (SST).
IEEE, pp. 133–137. doi: 10.1109/SST.2018.8564617.
McFarlane, D. et al. (2003) ‘Auto ID systems and
intelligent manufacturing control’, Engineering
Applications of Artificial Intelligence, 16(4), pp. 365–
376. doi: 10.1016/S0952-1976(03)00077-0.
Monostori, L. and Prohaszka, J. (1993) ‘A Step towards
Intelligent Manufacturing: Modelling and Monitoring
of Manufacturing Processes through Artificial Neural
Networks’, CIRP Annals - Manufacturing Technology,
42(1), pp. 485–488. doi: 10.1016/S0007-8506(07)62
491-3.
Palensky, P. and Dietrich, D. (2011) ‘Demand side
management: Demand response, intelligent energy
systems, and smart loads’, IEEE Transactions on
Industrial Informatics. IEEE, 7(3), pp. 381–388. doi:
10.1109/TII.2011.2158841.
Shen, W., Maturana, F. and Norrie, D. H. (2000)
‘Enhancing the performance of an agent-based
manufacturing system through learning and
forecasting’, Journal of Intelligent Manufacturing,
11(4), pp. 365–380. doi: 10.1023/A:1008926202597.
Van Stein, B. et al. (2017) ‘Towards data driven process
control in manufacturing car body parts’, Proceedings
- 2016 International Conference on Computational
Science and Computational Intelligence, CSCI 2016,
pp. 459–462. doi: 10.1109/CSCI.2016.0093.
Vieira, G. E., Herrmann, J. W. and Lin, E. (2003)
‘Rescheduling Manufacturing Systems: a Framework
of Strategies, Policies, and Methods’, Journal of
Scheduling, 6, pp. 39–62. Available at: https://link-
springer-com.ezproxy2.utwente.nl/content/pdf/10.102
3%2FA%3A1022235519958.pdf.
Windmann, S., Niggemann, O. and Stichweh, H. (2015)
‘Energy efficiency optimization by automatic
coordination of motor speeds in conveying systems’,
Proceedings of the IEEE International Conference on
Industrial Technology. IEEE, 2015–June(June), pp.
731–737. doi: 10.1109/ICIT.2015.7125185.
Woo, J., Shin, S.-J. and Seo, W. (2016) ‘Developing a Big
Data Analytics Platform for Increasing Sustainability
Performance in Machining Operations’, Flexible
Automation and Intelligent Manufacturing, (June), pp.
1–8. Available at: https://www.researchgate.net/
publication/305222784_Developing_a_Big_Data_Ana
lytics_Platform_for_Increasing_Sustainability_Perfor
mance_in_Machining_Operations.