belonging impact on the learning will also be
evaluated.
We also want to increase students’ motivation by
promoting an optimal learning environment. In fact,
researchers have shown the benefits of integrating
interpersonal relations on the motivation (Deci and
Ryan, 2002, 2014, Heutte 2017).
ACKNOWLEDGEMENTS
This research is supported by the Dig-e-Lab project
(https://dig-e-lab.eu/fr/) funded under the Interreg
European Union.
REFERENCES
Bhoje, G. (2015). The Importance of Motivation in an
Educational Environment. Lulu. com.
Bachen, C. M., Hernández-Ramos, P. Raphael, C., and
Waldron, A. (2016). How do presence, flow, and
character identification affect players’ empathy and
interest in learning from a serious computer game?
Computers in Human Behavior, 64, 77-87.
Bandura, A. (1986). Social foundations of thought and
action. Englewood Cliffs, NJ.
Bandura, A. (1997). Self-efficacy: The exercise of control.
Worth Publishers.
Chen, L.X. and Sun, C.T. (2016). Self-regulation influence
on game play flow state. Computers in Human
Behavior, 54, 341-350
Cronbach, L. J. (1951). Coefficient alpha and the internal
structure of tests. psychometrika, 16(3), 297-334.
Csikszentmihalyi, M. (1975). Beyond boredom and
anxiety: experiencing flow in Work and play. San
Francisco: Jossey-Bass.
Csikszentmihalyi, M. (2014). Applications of Flow in
Human Development and Education. Springer,
Dordrecht: Netherlands
Csikszentmihalyi, M., Abuhamdeh, S., and Nakamura, J.
(2005). Flow. In A.- J. Elliot and C.- S. Dweck (eds.)
Handbook of competence and motivation, 598-608.
New York: Guilford Press.
Csikszentmihalyi, M., and Csikszentmihalyi, I. (1988).
Optimal experience: Psychological studies of flow in
consciousness. New York : Cambridge University, 251–
265.
Csikszentmihalyi, M., and LeFevre, J. (1989). Optimal
experience in work and leisure. Journal of Personality
and Social Psychology, 56(5), 815-822.
Csikszentmihalyi, M., Rathunde, K., and Whalen, S.
(1993). Talented teenagers: The roots of success and
failure. New York: Cambridge University Press.
Culbertson, S. S., Fullagar, C. J., Simmons, M. J., and Zhu,
M. (2015). Contagious Flow: Antecedents and
Consequences of Optimal Experience in the Classroom.
Journal of Management Education, 39(3), 319–349
Deci, E. L., and Ryan, R. M. (2002). Handbook of self-
determination research. University Rochester Press.
Deci, E. L., and Ryan, R. M. (2014). Autonomy and need
satisfaction in close relationships. In N. Weinstein
(Dir.). Human motivation and interpersonal
relationships (pp. 53-73). Springer, Dordrecht.
Durik, A. M., and Matarazzo, K. L. (2009). Revved up or
turned off? How domain knowledge changes the
relationship between perceived task complexity and
task interest. Learning and Individual Differences,
19(1), 155-159.
EFRN (2014). What is Flow? – Current Definition of the
European Flow Researchers Network (EFRN).
Retrieved from: http://efrn.webs.com/about-us
(19.01.2019).
Engeser, S., and Rheinberg, F. (2008). Flow, performance
and moderators of challenge-skill balance. Motivation
and Emotion, 32(3), 158-172.
Fu, F. L., Su, R. C., and Yu, S. C. (2009). EGameFlow: A
scale to measure learners’ enjoyment of e-learning
games. Computers and Education, 52(1), 101-112.
Ghani, J. A., and Deshpande, S. P. (1994). Task
characteristics and the experience of optimal flow in
human-computer interaction. Journal Of Psychology-
Worcester Massachusetts-, 128, 381–381
Goleman, D. (1996). Emotional intelligence: Why it can
Matter more than IQ. Boomsbury, London. First
published by Bantam Books, New York, 1996.
Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., and
Tatham, R. L. (2006). Multivariate data analysis (Vol.
6). Pearson Prentice Hall, Upper Saddle River.
Heutte, J. (2017). Motivations, volition et expérience du
flow : quelques références théoriques pour l’étude des
communautés d’apprenance. Dans O. Las Vergnas
(dir.), Le e-learning informel ? Des apprentissages
diffus, noyés dans la participation en ligne (p. 199-
214). Paris, France : Archives contemporaines.
Heutte, J., Fenouillet, F., Boniwell, I., Martin-Krumm, C.
and Csikszentmihalyi, M. (2014). Optimal learning
experience in digital environments: theoretical
concepts, measure and modelisation. Proceedings of
Symposium Digital Learning in 21st Century
Universities. Atlanta, GA : Georgia Institute of
Technology.
Heutte, J., Fenouillet, F., Kaplan, J., Martin-Krumm, C. and
Bachelet, R. (2016). The EduFlow model – Ac
ontribution toward the study of optimal learning
environments. In, L. Harmat, F. Ø. Andersen, F. Ullén,
J. Wright and G. Sadlo (dir.). Flow Experience :
Empirical Research and Applications (p. 124-143).
Cham, Suisse : Springer.
Heutte, J., Fenouillet, F., Martin-Krumm, C., Boniwell, I.,
and Csikszentmihalyi, M. (2016). Proposal for a
conceptual evolution of the flow in education
(EduFlow) model. Proceedings of 8th European
Conference on Positive Psychology (ECPP 2016),
Angers, France.
A Flow Measurement Instrument to Test the Students’ Motivation in a Computer Science Course
503