Ansari, B. and Hasan, M. A. (2008). High-performance ar-
chitecture of elliptic curve scalar multiplication. IEEE
Transactions on Computers, 57(11):1443–1453.
Dalal, M. and Juneja, M. (2018). A robust and impercep-
tible steganography technique for sd and hd videos.
Multimedia Tools and Applications, pages 1–21.
Diffie, W. and Hellman, M. (1976). New directions in cryp-
tography. IEEE Transactions on Information Theory,
22(6):644–654.
ElGamal, T. (1985). A public key cryptosystem and a sig-
nature scheme based on discrete logarithms. IEEE
Transactions on Information Theory, 31(4):469–472.
for Standardization (ISO), I. O. (2000). Cryptographic tech-
niques based on elliptic curves.
Gallagher, P. (2013). Digital signature standard (dss). Fed-
eral Information Processing Standards Publications,
volume FIPS, pages 186–183.
Großsch
¨
adl, J. (2001). A bit-serial unified multiplier archi-
tecture for finite fields gf (p) and gf (2 m). In Inter-
national Workshop on Cryptographic Hardware and
Embedded Systems, pages 202–219. Springer.
Hankerson, D., Menezes, A. J., and Vanstone, S. (2006).
Guide to elliptic curve cryptography. Springer Sci-
ence and Business Media.
Harb, S. and Jarrah, M. (2017). Accelerating square root
computations over large gf (2m). In SECRYPT, pages
229–236.
Harb, S. and Jarrah, M. (2019). Fpga implementation of the
ecc over gf (2 m) for small embedded applications.
ACM Transactions on Embedded Computing Systems
(TECS), 18(2):17.
Hossain, M. S., Saeedi, E., and Kong, Y. (2015). High-
speed, area-efficient, fpga-based elliptic curve crypto-
graphic processor over nist binary fields. In Data Sci-
ence and Data Intensive Systems (DSDIS), 2015 IEEE
International Conference on, pages 175–181. IEEE.
Karatsuba, A. A. and Ofman, Y. P. (1962). Multiplication
of many-digital numbers by automatic computers. In
Doklady Akademii Nauk, volume 145, pages 293–294.
Russian Academy of Sciences.
Khan, Z. U. and Benaissa, M. (2015). Throughput/area-
efficient ecc processor using montgomery point mul-
tiplication on fpga. IEEE Transactions on Circuits and
Systems II: Express Briefs, 62(11):1078–1082.
Kocher, P., Jaffe, J., and Jun, B. (1999). Differential power
analysis. In Annual International Cryptology Confer-
ence, pages 388–397. Springer.
Li, L. and Li, S. (2016). High-performance pipelined archi-
tecture of elliptic curve scalar multiplication over gf
(2
m
). IEEE Transactions on Very Large Scale Integra-
tion (VLSI) Systems, 24(4):1223–1232.
L
´
opez, J. and Dahab, R. (1998). Improved algorithms for
elliptic curve arithmetic in gf (2 n). In International
Workshop on Selected Areas in Cryptography, pages
201–212. Springer.
Mahdizadeh, H. and Masoumi, M. (2013). Novel architec-
ture for efficient fpga implementation of elliptic curve
cryptographic processor over gf(2
163
). IEEE transac-
tions on very large scale integration (VLSI) systems,
21(12):2330–2333.
McGrew, D., Igoe, K., and Salter, M. (2011). Fundamen-
tal elliptic curve cryptography algorithms. Technical
Report 2018, Internet Engineering Task Force (IETF).
Miller, V. S. (1985). Use of elliptic curves in cryptogra-
phy. In Conference on the theory and application of
cryptographic techniques, pages 417–426. Springer.
Montgomery, P. L. (1987). Speeding the pollard and elliptic
curve methods of factorization. Mathematics of com-
putation, 48(177):243–264.
Moon, S. (2006). A binary redundant scalar point multipli-
cation in secure elliptic curve cryptosystems. IJ Net-
work Security, 3(2):132–137.
Percey, A. (2007). Advantages of the virtex-5 fpga 6-input
lut architecture.
Peter, S. and LangendOorfer, P. (2007). An efficient poly-
nomial multiplier in gf (2m) and its application to ecc
designs. In Design, Automation and Test in Europe
Conference and Exhibition, 2007. DATE’07, pages 1–
6. IEEE.
Przybus, B. (2010). Xilinx redefines power, performance,
and design productivity with three new 28 nm fpga
families: Virtex-7, kintex-7, and artix-7 devices. Xil-
inx White Paper.
Rashidi, B., Sayedi, S. M., and Farashahi, R. R. (2016).
High-speed hardware architecture of scalar multipli-
cation for binary elliptic curve cryptosystems. Micro-
electronics Journal, 52:49–65.
Rivest, R. L., Shamir, A., and Adleman, L. (1978). A
method for obtaining digital signatures and public-
key cryptosystems. Communications of the ACM,
21(2):120–126.
Roy, S. S., Rebeiro, C., and Mukhopadhyay, D. (2013).
Theoretical modeling of elliptic curve scalar multi-
plier on lut-based fpgas for area and speed. IEEE
Transactions on Very Large Scale Integration (VLSI)
Systems, 21(5):901–909.
Specification, P. (2006). Virtex-5 family overview.
Sutter, G. D., Deschamps, J.-P., and Ima
˜
na, J. L. (2013). Ef-
ficient elliptic curve point multiplication using digit-
serial binary field operations. IEEE Transactions on
Industrial Electronics, 60(1):217–225.
Wenger, E. and Hutter, M. (2011a). Exploring the design
space of prime field vs. binary field ecc-hardware im-
plementations. In Nordic Conference on Secure IT
Systems, pages 256–271. Springer.
Wenger, E. and Hutter, M. (2011b). Exploring the design
space of prime field vs. binary field ecc-hardware im-
plementations. In Nordic Conference on Secure IT
Systems, pages 256–271. Springer.
Xilinx, I. (2018a). Xilinx - adaptive and intelligent.
Xilinx, I. (2018b). Xilinx fpga devices, virtex, kintex, artix.
Xilinx, I. (April 24, 2012). Ise in-depth tutorial, complete
guide (ug695). Technical Report 14.1, Xilinx, Inc.
Zhou, G., Michalik, H., and Hinsenkamp, L. (2010). Com-
plexity analysis and efficient implementations of bit
parallel finite field multipliers based on karatsuba-
ofman algorithm on fpgas. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 18(7):1057–
1066.
SECRYPT 2019 - 16th International Conference on Security and Cryptography
24