REFERENCES
Anstreicher, K., Brixius, N., Goux, J.-P., and Linderoth, J.
(2002). Solving large quadratic assignment problems
on computational grids. Mathematical Programming,
91(3):563–588.
Archibald, B., Maier, P., McCreesh, C., Stewart, R., and
Trinder, P. (2018). Replicable parallel branch and
bound search. Journal of Parallel and Distributed
Computing, 113:92 – 114.
Blochinger, W., Dangelmayr, C., and Schulz, S. (2006).
Aspect-oriented parallel discrete optimization on the
cohesion desktop grid platform. In Cluster Computing
and the Grid, 2006. CCGRID 06. Sixth IEEE Interna-
tional Symposium on, volume 1, pages 49–56.
Blumofe, R. D., Joerg, C. F., Kuszmaul, B. C., Leiserson,
C. E., Randall, K. H., and Zhou, Y. (1996). Cilk:
An efficient multithreaded runtime system. Journal
of Parallel and Distributed Computing, 37(1):55 – 69.
Blumofe, R. D. and Leiserson, C. E. (1999). Schedul-
ing multithreaded computations by work stealing. J.
ACM, 46(5):720–748.
Cormen, T., Leiserson, C., Rivest, R., and Stein, C. (2009).
Introduction to algorithms (3rd ed.).
Cunningham, D., Grove, D., Herta, B., Iyengar, A.,
Kawachiya, K., Murata, H., Saraswat, V., Takeuchi,
M., and Tardieu, O. (2014). Resilient x10: Efficient
failure-aware programming. In Proceedings of the
19th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP ’14, pages
67–80, New York, NY, USA. ACM.
Da Rosa Righi, R., Rodrigues, V. F., Da Costa, C. A.,
Galante, G., De Bona, L. C. E., and Ferreto, T. (2016).
Autoelastic: Automatic resource elasticity for high
performance applications in the cloud. IEEE Trans-
actions on Cloud Computing, 4(1):6–19.
Galante, G., De Bona, L. C. E., Mury, A. R., Schulze,
B., and Da Rosa Righi, R. (2016). An analysis of
public clouds elasticity in the execution of scientific
applications: a survey. Journal of Grid Computing,
14(2):193–216.
Grama, A., Gupta, A., Karypis, G., and Kumar, V. (2003).
Introduction to Parallel Computing. Pearson Educa-
tion, second edition.
Gupta, A., Faraboschi, P., Gioachin, F., Kale, L. V., Kauf-
mann, R., Lee, B., March, V., Milojicic, D., and Suen,
C. H. (2016). Evaluating and improving the perfor-
mance and scheduling of hpc applications in cloud.
IEEE Transactions on Cloud Computing, 4(3):307–
321.
Gupta, A., Kale, L. V., Gioachin, F., March, V., Suen, C. H.,
Lee, B. S., Faraboschi, P., Kaufmann, R., and Miloji-
cic, D. (2013a). The who, what, why, and how of high
performance computing in the cloud. In IEEE 5th In-
ternational Conference on Cloud Computing Technol-
ogy and Science, volume 1, pages 306–314.
Gupta, A., Sarood, O., Kale, L. V., and Milojicic, D.
(2013b). Improving hpc application performance
in cloud through dynamic load balancing. In
13th IEEE/ACM International Symposium on Cluster,
Cloud, and Grid Computing, pages 402–409.
Hannak, H., Blochinger, W., and Trieflinger, S. (2012). A
desktop grid enabled parallel barnes-hut algorithm. In
2012 IEEE 31st International Performance Comput-
ing and Communications Conference, pages 120–129.
Haussmann, J., Blochinger, W., and Kuechlin, W. (2018).
Cost-efficient parallel processing of irregularly struc-
tured problems in cloud computing environments.
Cluster Computing.
Hunt, P., Konar, M., Junqueira, F. P., and Reed, B. (2010).
Zookeeper: Wait-free coordination for internet-scale
systems. In Proceedings of the 2010 USENIX Con-
ference on USENIX Annual Technical Conference,
USENIXATC’10, pages 11–11, Berkeley, CA, USA.
Junqueira, F. and Reed, B. (2013). ZooKeeper: distributed
process coordination. O’Reilly Media, Inc.
Kehrer, S. and Blochinger, W. (2018a). Autogenic: Au-
tomated generation of self-configuring microservices.
In Proceedings of the 8th International Conference on
Cloud Computing and Services Science - Volume 1:
CLOSER,, pages 35–46. INSTICC, SciTePress.
Kehrer, S. and Blochinger, W. (2018b). Tosca-based con-
tainer orchestration on mesos. Computer Science -
Research and Development, 33(3):305–316.
Kehrer, S. and Blochinger, W. (2019). Migrating parallel
applications to the cloud: assessing cloud readiness
based on parallel design decisions. SICS Software-
Intensive Cyber-Physical Systems.
Netto, M. A. S., Calheiros, R. N., Rodrigues, E. R., Cunha,
R. L. F., and Buyya, R. (2018). Hpc cloud for sci-
entific and business applications: Taxonomy, vision,
and research challenges. ACM Computing Surveys
(CSUR), 51(1):8:1–8:29.
Parashar, M., AbdelBaky, M., Rodero, I., and Devarakonda,
A. (2013). Cloud paradigms and practices for com-
putational and data-enabled science and engineering.
Computing in Science Engineering, 15(4):10–18.
Poldner, M. and Kuchen, H. (2008). Algorithmic skeletons
for branch and bound. In Filipe, J., Shishkov, B., and
Helfert, M., editors, Software and Data Technologies,
pages 204–219, Berlin, Heidelberg. Springer.
Prim, R. C. (1957). Shortest connection networks and some
generalizations. The Bell System Technical Journal,
36(6):1389–1401.
Rajan, D., Canino, A., Izaguirre, J. A., and Thain, D.
(2011). Converting a high performance application
to an elastic cloud application. In IEEE Third Inter-
national Conference on Cloud Computing Technology
and Science (CloudCom), pages 383–390.
Rajan, D. and Thain, D. (2017). Designing self-tuning
split-map-merge applications for high cost-efficiency
in the cloud. IEEE Transactions on Cloud Computing,
5(2):303–316.
Schulz, S., Blochinger, W., Held, M., and Dangelmayr, C.
(2008). Cohesion — a microkernel based desktop grid
platform for irregular task-parallel applications. Fu-
ture Generation Computer Systems, 24(5):354 – 370.
Sedgewick, R. (1984). Algorithms. Addison-Wesley Pub-
lishing Co., Inc., Boston, MA, USA.
TASKWORK: A Cloud-aware Runtime System for Elastic Task-parallel HPC Applications
209