jetos de Aprendizagem e Estilos de Aprendizagem.
(Cbie):1307.
Cheng, Y., Pedersen, M., and Chen, G. (2017). Evaluation
of image quality metrics for sharpness enhancement.
In Proceedings of the 10th International Symposium
on Image and Signal Processing and Analysis, pages
115–120.
d. Silva, J. W. F., d. Souza, C. T., and d. F. C. d. Souza,
M. (2017). Clover: An optimized repository for cus-
tomizable learning objects. In 2017 IEEE 17th Inter-
national Conference on Advanced Learning Technolo-
gies (ICALT), pages 76–78.
Guterres, J. and Silveira, M. (2017a). As Principais Dificul-
dades Encontradas Durante o Processo de Produc¸
˜
ao
de Objetos de Aprendizagem. (Cbie):294.
Guterres, J. and Silveira, M. (2017b). Um Framework para
Apoio
`
a Reflex
˜
ao sobre o Processo de Produc¸
˜
ao de
Objetos de Aprendizagem. (Cbie):284.
Hodgins, H. W. (2002). The future of learning ob-
jects. http://www.coe.gatech.edu/eTEE and http:
//dc.engconfintl.org/etechnologies/11/ acessado em
2018/06/08.
Krasula, L., Callet, P. L., Fliegel, K., and Kl
´
ıma, M. (2017).
Quality assessment of sharpened images: Challenges,
methodology, and objective metrics. IEEE Transac-
tions on Image Processing, 26(3):1496–1508.
Lima, R. W. D., Oliveira, A. M. D., and Silva, P. D. A.
(2017). Ontologia para o Gerenciamento de Objetos
de Aprendizagem. (Cbie):1796–1798.
LTSC, L. T. S. C. (2002). Ieee standard for learning object
metadata. IEEE Std 1484.12.1-2002, pages 1–40.
Mend
´
ez, N. D., Morales, V. T., and Vicari, R. M. (2016).
Learning Object Metadata Mapping with Learning
Styles as a Strategy for Improving Usability of Educa-
tional Resource Repositories. Revista Iberoamericana
de Tecnologias del Aprendizaje, 11(2):101–106.
Murray, J. (1994). Some perspectives on visual depth
perception. ACM SIGGRAPH Computer Graphics,
28(2):155–157.
Redmond, C., Davies, C., Cornally, D., Adam, E., Daly, O.,
Fegan, M., and O’Toole, M. (2018). Using reusable
learning objects (RLOs) in wound care education: Un-
dergraduate student nurse’s evaluation of their learn-
ing gain. Nurse Education Today, 60(November
2016):3–10.
Rodes-Paragarino, V., Gewerc-Barujel, A., and Llamas-
Nistal, M. (2016). Use of Repositories of Digital
Educational Resources: State-of-the-Art Review. Re-
vista Iberoamericana de Tecnologias del Aprendizaje,
11(2):73–78.
Sanches, L., Costa, L., Salvador, L. N., and Souza, M.
(2017). Anotac¸
˜
ao sem
ˆ
antica autom
´
atica de Objetos de
Aprendizagem Digitais: Um mapeamento sistem
´
atico
de literatura. (Cbie):31.
Solav, D. (2018). MultiDIC: an Open-Source Toolbox for
Multi-View 3D Digital Image Correlation. 6.
Srivastava, B. and Haider, M. T. U. (2017). Personalized
assessment model for alphabets learning with learning
objects in e-learning environment for dyslexia. Jour-
nal of King Saud University - Computer and Informa-
tion Sciences.
Tarouco, L. M. R., Costa, V. M. d.,
´
Avila, B. G., Bez, M. R.,
and Santos, E. F. d. (2014). Objetos de Aprendizagem:
Teoria e Pr
´
atica.
Weber, J., Faria, V. D., Teixeira, M. J., Otoch, J. P., and
Figueiredo, E. G. (2016). Virtual and stereoscopic
anatomy: when virtual reality meets medical educa-
tion. 125(November):1105–1111.
Wiley, D. A. (2002). Connecting learning objects to in-
structional design theory: A definition, a metaphor,
and a taxonomy. http://reusability.org/read/chapters/
wiley.doc acessado em 2018/06/08.
Xu, G., Chen, J., and Li, X. (2017). 3-D Reconstruction
of Binocular Vision Using Distance Objective Gener-
ated From Two Pairs of Skew Projection Lines. IEEE
Access, 5:27272–27280.
Yu, H., Cao, T., Li, B., Dong, R., and Zhou, H. (2016). A
method for color calibration based on simulated an-
nealing optimization. In 2016 3rd International Con-
ference on Information Science and Control Engineer-
ing (ICISCE), pages 54–58.
Zhang, T., Liu, J., Liu, S., Tang, C., and Jin, P. (2017). A 3D
reconstruction method for pipeline inspection based
on multi-vision. Measurement: Journal of the Inter-
national Measurement Confederation, 98:35–48.
CSEDU 2019 - 11th International Conference on Computer Supported Education
176