As more technologies emerge like the block-
chain, the internet of things and the artificial
intelligent technologies, anonymization and
encryption of data become more important than ever.
Future work will aim on further development of the
tool implementing new anonymization algorithms,
testing different types of data, comparing the
effectiveness of each implemented algorithm and
linking the anonymization tool with the analytics
framework (Koumakis, et al., 2018).
ACKNOWLEDGEMENTS
Work reported in this chapter was partially supported
by the European Union’s Horizon 2020 research and
innovation programme under projects
iManageCancer (“Empowering patients and
strengthening self-management in cancer diseases”,
grant agreement No 643529, http://imanagecancer.eu
), Bounce (“Predicting Effective Adaptation to Breast
Cancer to Help Women to BOUNCE Back”, grant
agreement No 777167, https://www.bounce-
project.eu), and MyPal (“Fostering Palliative Care of
Adults and Children with Cancer through Advanced
Patient Reported Outcome Systems”, grant
agreement No 825872, http://mypal-project.eu/).
REFERENCES
Abidalrahman, M., Jararweh, Y., Tawalbeh, L. (2011) AES-
512: 512-bit Advanced Encryption Standard algorithm
design and evaluation.Information Assurance and
Security (IAS).
Aggarwal, C. C., & Philip, S. Y. (2008). A general survey
of privacy-preserving data mining models and
algorithms. In Privacy-preserving data mining (pp. 11-
52). Springer, Boston, MA.
Berman, J. J. (2002). Confidentiality issues for medical data
miners. Artificial Intelligence in Medicine, 26(1-2), 25-
36.
EmrBots.Org (2018) Experiment with artificial large
medical data-sets without worrying about privacy,
http://www.emrbots.org/ [Online; accessed August
2018].
Hendricks, P. (2015) Anonymizer: Anonymize Data
Containing Personally Identifiable Information. R
package version 0.2.0. https://github.com/
paulhendricks/anonymizer [Online; accessed August
2018].
Katehakis, D. G., Halkiotis, S., & Kouroubali, A. (2011).
Materialization of Regional Health Information
Networks in Greece: Electronic Health Record Barriers
& Enablers. Journal of Healthcare Engineering, 2(3),
389-403.
Katehakis, D. G., Kondylakis, H., Koumakis, L.,
Kouroubali, A., & Marias, K. (2017). Integrated Care
Solutions for the Citizen: Personal Health Record
Functional Models to Support Interoperability. EJBI,
13(1), 41-56.
Kaur, N., Sodhi, S. (2016) Data Encryption Standard
Algorithm (DES) for Secure Data Transmission.
International Conference on Advances in Emerging
Technology (ICAET).
Kondylakis, H., Bucur, A., Dong, F., Renzi, C., Manfrinati,
A., Graf, N., Hoffman, S., Koumakis, L., Pravettoni, G.,
Marias, K. and Tsiknakis, M., (2017, June).
iManageCancer: Developing a platform for Empowering
patients and strengthening self-management in cancer
diseases. In 2017 IEEE 30th International Symposium on
Computer-Based Medical Systems (CBMS) (pp. 755-
760). IEEE.
Kondylakis, H., Claerhout, B., Keyur, M., Koumakis, L.,
van Leeuwen, J., Marias, K., Perez-Rey, D., De
Schepper, K., Tsiknakis, M., Bucur, A. (2016). The
INTEGRATE project: Delivering solutions for efficient
multi-centric clinical research and trials. Journal of
biomedical informatics, 62, 32-47.
Kondylakis, H., Flouris, G., Fundulaki, I., Papakonstantinou,
V., & Tsiknakis, M. (2015a). Flexible access to patient
data through e-Consent. In Proceedings of the 5th EAI
International Conference on Wireless Mobile
Communication and Healthcare, pp. 263-266.
Kondylakis, H., Koumakis, L., Hänold, S., Nwankwo, I.,
Forgó, N., Marias, K., Tsiknakis, M. and Graf, N., (2017).
Donor’s support tool: Enabling informed secondary use of
patient’s biomaterial and personal data. International
journal of medical informatics, 97, pp.282-292.
Kondylakis, H., Koumakis, L., Kazantzaki, E., Chatzimina,
M., Psaraki, M., Marias, K., Tsiknakis, M., (2015b).
Patient Empowerment through Personal Medical
Recommendations. MedInfo, 1117
Kondylakis, H., Koumakis, L., Psaraki, M., Troullinou, G.,
Chatzimina, M., Kazantzaki, E., ... & Tsiknakis, M.
(2015c). Semantically-enabled Personal Medical
Information Recommender. In International Semantic
Web Conference (Posters & Demos).
Kondylakis, H., Spanakis, E. G., Sfakianakis, S., Sakkalis,
V., Tsiknakis, M., Marias, K., ... & Dong, F. (2015d).
Digital patient: personalized and translational data
management through the MyHealthAvatar EU project.
IEEE EMBC, pp. 1397-1400.
Koumakis, L., Kondylakis, H., Katehakis, D. G., Iatraki, G.,
Argyropaidas, P., Hatzimina, M., & Marias, K. (2018).
A content-aware analytics framework for open health
data. In Precision Medicine Powered by pHealth and
Connected Health (pp. 59-64). Springer, Singapore.
Kouroubali, A., Starren, J., Barrows Jr, R. C., & Clayton, P.
D. (1997). Practical lessons in remote connectivity. In
Proceedings of the AMIA Annual Fall Symposium (p.
335). American Medical Informatics Association.
Luminiţa, S.,Mătăsaru, P.,Diaconu, F. (2017) Extended
DES algorithm to Galois Fields. IEEE Signals, Circuits
and Systems (ISSCS).
ShinyAnonymizer: A Tool for Anonymizing Health Data
331