ence and Electronic Engineering Conf. (CEEC), pages
103–108. IEEE.
Alvarez, L., Ayguade, E., and Mantovani, F. (2018).
Teaching HPC systems and parallel programming
with small-scale clusters. In 2018 IEEE/ACM Work-
shop on Education for High-Performance Computing
(EduHPC), pages 1–10.
Azab, A. (2017). Enabling Docker containers for high-
performance and many-task computing. In 2017
IEEE International Conference on Cloud Engineering
(IC2E), pages 279–285.
Beserra, D., Pinheiro, M. K., Souveyet, C., Steffenel, L. A.,
and Moreno, E. D. (2017). Performance evaluation of
os-level virtualization solutions for HPC purposes on
SoC-based systems. In 2017 IEEE 31st International
Conference on Advanced Information Networking and
Applications (AINA), pages 363–370.
Burns, B., Grant, B., Oppenheimer, D., Brewer, E., and
Wilkes, J. (2016). Borg, omega, and kubernetes. Com-
mun. ACM, 59(5):50–57.
Chung, M. T., Quang-Hung, N., Nguyen, M., and Thoai, N.
(2016). Using docker in high performance computing
applications. In 2016 IEEE Sixth International Con-
ference on Communications and Electronics (ICCE),
pages 52–57.
Council, H. A. (2010). Weather research and fore-
casting (WRF): Performance benchmark and
profiling, best practices of the HPC advisory
council. Technical report, HPC Advisory Coun-
cil, http://www.hpcadvisorycouncil.com/pdf/
WRF Analysis and Profiling Intel.pdf.
Cox, S. J., Cox, J. T., Boardman, R. P., Johnston, S. J., Scott,
M., and O’brien, N. S. (2014). Iridis-pi: a low-cost,
compact demonstration cluster. Cluster Computing,
17(2):349–358.
d. Bayser, M. and Cerqueira, R. (2017). Integrating mpi
with docker for hpc. In 2017 IEEE International Con-
ference on Cloud Engineering (IC2E), pages 259–265.
Felter, W., Ferreira, A., Rajamony, R., and Rubio, J. (2014).
An updated performance comparison of virtual ma-
chines and linux containers. IBM technical report
RC25482 (AUS1407-001), Computer Science.
Hacker, J. P., Exby, J., Gill, D., Jimenez, I., Maltzahn, C.,
See, T., Mullendore, G., and Fossell, K. (2017). A
containerized mesoscale model and analysis toolkit to
accelerate classroom learning, collaborative research,
and uncertainty quantification. Bulletin of the Ameri-
can Meteorological Society, 98(6):1129–1138.
Higgins, J., Holmes, V., and Venters, C. (2015). Orches-
trating docker containers in the HPC environment. In
Kunkel, J. M. and Ludwig, T., editors, High Perfor-
mance Computing, pages 506–513, Cham. Springer
International Publishing.
Kurtzer, G. M., Sochat, V., and Bauer, M. W. (2017). Singu-
larity: Scientific containers for mobility of compute.
PLOS ONE, 12(5):1–20.
Langkamp, T. and B
¨
ohner, J. (2011). Influence of the com-
piler on multi-CPU performance of WRFv3. Geosci-
entific Model Development, 4(3):611–623.
Marathe, A., Harris, R., Lowenthal, D., de Supinski, B. R.,
Rountree, B., and Schulz, M. (2014). Exploiting re-
dundancy for cost-effective, time-constrained execu-
tion of HPC applications on Amazon EC2. In 23rd Int.
Symposium on High-Performance Parallel and Dis-
tributed Computing, pages 279–290. ACM.
Molano, J. I. R., Betancourt, D., and G
´
omez, G. (2015).
Internet of things: A prototype architecture using a
Raspberry Pi. In Knowledge Management in Organi-
zations, pages 618–631. Springer.
Montella, R., Giunta, G., and Laccetti, G. (2014). Virtu-
alizing high-end GPGPUs on ARM clusters for the
next generation of high performance cloud comput-
ing. Cluster computing, 17(1):139–152.
Morabito, R., Kjallman, J., and Komu, M. (2015). Hyper-
visors vs. lightweight virtualization: a performance
comparison. In Cloud Engineering (IC2E), IEEE Int.
Conf. on, pages 386–393. IEEE.
Nguyen, N. and Bein, D. (2017). Distributed MPI cluster
with Docker Swarm mode. In 2017 IEEE 7th Annual
Computing and Communication Workshop and Con-
ference (CCWC), pages 1–7.
Ruiz, C., Jeanvoine, E., and Nussbaum, L. (2015). Perfor-
mance evaluation of containers for HPC. In Hunold,
S., Costan, A., Gim
´
enez, D., Iosup, A., Ricci, L.,
G
´
omez Requena, M. E., Scarano, V., Varbanescu,
A. L., Scott, S. L., Lankes, S., Weidendorfer, J., and
Alexander, M., editors, Euro-Par 2015: Parallel Pro-
cessing Workshops, pages 813–824, Cham. Springer
International Publishing.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O.,
Barker, D. M., Duda, M. G., Huang, X.-Y., Wang,
W., and Powers, J. G. (2008). A description of the
advanced research WRF version 3, NCAR techni-
cal note. National Center for Atmospheric Research,
Boulder, Colorado, USA.
Somasundaram, T. S. and Govindarajan, K. (2014).
CLOUDRB: A framework for scheduling and manag-
ing high-performance computing (HPC) applications
in science cloud. Future Generation Computer Sys-
tems, 34:47–65.
Steffenel, L. and Kirsch-Pinheiro, M. (2015). When the
cloud goes pervasive: approaches for IoT PaaS on a
mobiquitous world. In EAI International Conference
on Cloud, Networking for IoT systems (CN4IoT 2015),
Rome, Italy.
Weloli, J. W., Bilavarn, S., Vries, M. D., Derradji, S., and
Belleudy, C. (2017). Efficiency modeling and explo-
ration of 64-bit ARM compute nodes for exascale. Mi-
croprocessors and Microsystems, 53:68 – 80.
Wolf, W., Jerraya, A. A., and Martin, G. (2008).
Multiprocessor system-on-chip (MPSoC) technology.
Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, 27(10):1701–1713.
Yong, C., Lee, G.-W., and Huh, E.-N. (2018). Proposal of
container-based hpc structures and performance anal-
ysis. 14.
Younge, A. J., Henschel, R., Brown, J. T., von Laszewski,
G., Qiu, J., and Fox, G. C. (2011). Analysis of virtu-
alization technologies for high performance comput-
ing environments. In IEEE 4th International Confer-
ence on Cloud Computing, CLOUD ’11, pages 9–16,
Washington, DC, USA. IEEE Computer Society.
CLOSER 2019 - 9th International Conference on Cloud Computing and Services Science
568