ACKNOWLEDGEMENTS
The financial support by the European Union and the
Greece (Partnership Agreement for the Development
Framework 2014-2020) under the Regional Opera-
tional Programme Ionian Islands 2014-2020 for the
project “TRaditional corfU Music PresErvation thr-
ough digiTal innovation - TRUMPET” is gratefully
acknowledged.
REFERENCES
Blackmore, S. (2000). The meme machine. Oxford Univer-
stiy Press.
Drakopoulos, G. (2016). Tensor fusion of social structural
and functional analytics over Neo4j. In IISA. IEEE.
Drakopoulos, G., Gourgaris, P., and Kanavos, A. (2018).
Graph communities in Neo4j: Four algorithms at
work. Evolving Systems.
Drakopoulos, G., Kanavos, A., Karydis, I., Sioutas, S., and
Vrahatis, A. G. (2017a). Tensor-based semantically-
aware topic clustering of biomedical documents.
Computation, 5(3).
Drakopoulos, G., Kanavos, A., Mylonas, P., and Sioutas,
S. (2017b). Defining and evaluating Twitter influence
metrics: A higher order approach in Neo4j. SNAM,
71(1).
Drakopoulos, G., Kanavos, A., and Tsakalidis, A. (2016a).
Evaluating Twitter influence ranking with system the-
ory. In WEBIST.
Drakopoulos, G., Kanavos, A., and Tsakalidis, K. (2017c).
Fuzzy random walkers with second order bounds: An
asymmetric analysis. Algorithms, 10(2).
Drakopoulos, G., Kontopoulos, S., and Makris, C. (2016b).
Eventually consistent cardinality estimation with ap-
plications in biodata mining. In SAC. ACM.
Drakopoulos, G., Stathopoulou, F., Kanavos, A.,
Paraskevas, M., Tzimas, G., Mylonas, P., and Il-
iadis, L. (2019). A genetic algorithm for spatiosocial
tensor clustering: Exploiting TensorFlow potential.
Evolving Systems.
Gilbert, E. and Karahalios, K. (2009). Predicting tie
strength with social media. In SIGCHI conference on
human factors in computing systems, pages 211–220.
ACM.
Golbeck, J. and Hendler, J. (2006). Inferring binary trust
relationships in Web-based social networks. TOIT,
6(4):497–529.
Golbeck, J., Hendler, J., et al. (2006). Filmtrust: Movie
recommendations using trust in Web-based social net-
works. In Proceedings of the IEEE Consumer commu-
nications and networking conference, pages 282–286.
Golbeck, J. A. (2005). Computing and applying trust in
web-based social networks. PhD thesis, University of
Maryland, College Park.
Jamali, M. and Ester, M. (2010). A matrix factorization
technique with trust propagation for recommendation
in social networks. In Proceedings of the fourth ACM
conference on Recommender systems, pages 135–142.
ACM.
Mislove, A., Marcon, M., Gummadi, K. P., Druschel, P.,
and Bhattacharjee, B. (2007). Measurement and anal-
ysis of online social networks. In Proceedings of the
7th ACM SIGCOMM conference on Internet measure-
ment, pages 29–42. ACM.
Muller, M. (2004). Multiple paradigms in affective comput-
ing. Interacting with Computers, 16(4):759–768.
Pang, B. and Lee, L. (2008). Opinion mining and senti-
ment analysis. Foundations and trends in information
retrieval, 2(1-2):1–135.
Papalexakis, E. E. and Faloutsos, C. (2015). Fast effi-
cient and scalable core consistency diagnostic for the
PARAFAC decomposition for big sparse tensors. In
ICASSP, pages 5441–5445.
Papalexakis, E. E., Pelechrinis, K., and Faloutsos, C.
(2014). Spotting misbehaviors in location-based so-
cial networks using tensors. In WWW, pages 551–552.
Picard, R. W. (2003). Affective computing: Challenges.
International Journal of Human-Computer Studies,
59(1):55–64.
Picard, R. W., Vyzas, E., and Healey, J. (2001). Toward
machine emotional intelligence: Analysis of affective
physiological state. TPAMI, 23(10):1175–1191.
Russell, M. A. (2013). Mining the social Web: Analyzing
data from Facebook, Twitter, LinkedIn, and other so-
cial media sites. O’Reilly, 2nd edition.
Thompson, K. (1984). Reflections on trusting trust. Com-
munications of the ACM, 27(8):761–763.
Tversky, A. (1977). Features of similarity. Psychological
review, 84(4):327.
www.counterpunch.org (2017). Go ask Alice: The curious
case of Alice Donovan.
www.theguadian.com (2017). Twitter drops egg avatar in
attempt to break association with Internet trolls.
Towards Predicting Mentions to Verified Twitter Accounts: Building Prediction Models over MongoDB with Keras
33