7 CONCLUSION
In this paper a buffer system is introduced that acts as
an assisting system for the automated draping of tex-
tiles. The issue of length differences when deposition-
ing textiles on double curved surfaces is addressed.
As a solution, an adaptable material buffer which can
independently control the two edge lengths of the fab-
ric during the application process is proposed. For this
solution the mechanical design, the control architec-
ture and the mathematical background for controlling
the buffer system are presented. The suggested ap-
proach was implemented and evaluated by an experi-
mental investigation. The results were emphasized
and improvements like layup quality, material guid-
ance as well as the occurring disadvantages are dis-
cussed. Future works have as goal the improvement
of the interaction between the supply roll and the
buffer system, as well as the correction of the material
drift by deflecting the adjustable roll of the material
buffer. The geometrical velocity offset, passed onto
the drives of the draping roll, must also be fully inte-
grated. Nevertheless the present approach is a prom-
ising solution which can contribute to the automated
draping of textiles.
REFERENCES
Black, S. 2003. Precision Feed End-Effektor composites
fabric tape-laying apparatus and method. High
Performance Composites Magazine.
Black, S. 2009. Automating wind blade manu-facture.
Composites World.
Bronstein, I. N., Semendjajew, K. A., Musiol, G. & Mühlig,
H. 2008. Taschenbuch der Mathematik. 7., vollstän-dig
überarbeitete und ergänzte Auflage. Frankfurt am
Main: Verlag Harri Deutsch.
Croft, K., Lessard, L., Pasini, D., Hojjati, M., Chen, J. H. &
Yousefpour, A. 2011. Experimental study of the effect
of automated fiber placement induced defects on
performance of composite laminates. Composites Part
a-Applied Science and Manufacturing, 42, 484-491.
Ehinger, C. A. 2013. Automatisierte Montage von Faser-
verbund-Vorformlingen. Dissertation, Technischen
Universität München.
Elkington, M., Ward, C. & Sarkytbayev, A. 2017.
Automated composite draping - A review. SAMPE
2017. SAMPE North America.
Gardiner, G. 2011. A350 XWB update: Smart manufacturing.
High-performance compos-tes, 19(5), 54-60.
Groppe, D. 2007. Precision Feed End-Effektor composites
fabric tape-laying apparatus and method. United States
patent applica-tion 10/661,383.
kiusalaas, J. 2013. Numerical methods in engineering with
Python 3, Cambridge university press.
Kozaczuk, K. 2016. Automated Fiber Placement Systems
Overview. Transactions of the Institute of Aviation,
245, 52-59.
Lukaszewicz, D. H. J. A., Ward, C. & Potter, K. D. 2012.
The engineering as-pects of automated prepreg layup:
History, present and future. Composites Part B:
Engineering, 43, 997-1009.
Manson, J.-A. E., Rozant, O. & Bourban, P.-E. 2000.
Drapability of dry textile fa-brics for stampable
thermoplastic preforms. Composites Part A: Applied
Science and Manufacturing(UK), 31, 1167-1177.
Marsh, G. 2011. Automating aerospace composi-tes
production with fibre placement. Rein forced Plastics,
55, 32-37.
Müller, D. H. 2007. Projekt PRO-CFK, Techni-scher
Abschlussbericht.
Niefenecker, D. 2014. Azimut - Automatisie-rung
zukunftsweisender industrieller Me-thoden und
Technologien für CFK-Rümpfe. Abschlussbericht.
Ohlendorf, J.-H., Rolbiecki, M., Schmohl, T., Franke, J. &
Ischtschuk, L. 2014. mapretec - ein Verfahren zur
preform-Herstellung durch ebene Ablage für ein
räumliches Bauteil als Basis einer automatisierten
Prozesskette zur Rotorblattfertigung.
Olsen, H. B. & Craig, J. J. Automated composi-te tape lay-
up using robotic devices. [1993] Proceedings IEEE
International Conference on Robotics and Automation,
1993. IEEE, 291-297.
Richrath, M., Franke, J., Ohlendorf, J.-H. & Thoben, K.-D.
2017. Effektor für die automatisierte Direktablage von
Textili-en in der Rotorblattfertigung. Lightweight
Design, 10, 48-53.
Schmidt-Eisenlohr, C., Kaufmann, P., Sonnenberg, M. &
Malecha, M. 2019. Optimised trajectory calculation for
the automated layup of wide lightning protection tapes
on double-curved fuselage sections. Composite
Structures, 210, 906-913.
Schnitzer, M. 2013. Anforderungen und Lösungsansätze
für einen höheren Automa-tisierungsgrad in der CFK-
Fertigung. 2. Augsburger Produktionstechnik-
Kolloqui-um. Augsburg.
Sloan, J. 2008. ATL and AFP: Defining the megatrends in
composite aerostructures. Composites World.
Szcesny, M., Heieck, F., Carosella, S., Middendorf, P.,
Sehrschön, H. & Schneiderbauer, M. 2017. The
advanced ply placement process – an inno-vative direct
3D placement technology for plies and tapes. Advanced
Manufacturing: Polymer & Composites Science, 3, 2-
9.
Wade, J. 2012. The effect of tow grouping resolu-tion on
shearing deformation of unidirec-tional non-crimp
fabric. Master of Science.
Weigel, L. & Müller, D. H. 2007. PREBLADE -
Gemeinsamer Technischer Abschlussbe-richt.
Zhu, S. 2015. An automated method for the layup of
fiberglass fabric. Dissertation, Iowa State University.
Zhu, S., Magnussen, C. J., Judd, E. L., Frank, M. C. &
Peters, F. E. 2017. Automated Composite Fabric Layup
for Wind Turbine Blades. Journal of Manufac-turing
Science and Engineering, 139.