De Choudhury, M. and De, S. (2014). Mental health dis-
course on reddit: Self-disclosure, social support, and
anonymity. In ICWSM.
De Choudhury, M., Gamon, M., Counts, S., and Horvitz,
E. (2013b). Predicting depression via social media.
ICWSM, 13:1–10.
De Choudhury, M., Kiciman, E., Dredze, M., Coppersmith,
G., and Kumar, M. (2016). Discovering shifts to suici-
dal ideation from mental health content in social me-
dia. In Proceedings of the 2016 CHI conference on hu-
man factors in computing systems, pages 2098–2110.
ACM.
Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-
Fei, L. (2009). 34imagenet: A large-scale hierarchi-
cal image database. In Computer Vision and Pattern
Recognition, 2009. CVPR 2009. IEEE Conference on,
pages 248–255. Ieee.
Grus, J. (2015). Data science from scratch: first principles
with python. ” O’Reilly Media, Inc.”.
Instagram (Accessed July 26, 2016). Instagram (2016) In-
stagram press release. Instagram.
Kang, K., Yoon, C., and Kim, E. Y. (2016). Identifying
depressive users in twitter using multimodal analysis.
In Big Data and Smart Computing (BigComp), 2016
International Conference on, pages 231–238. IEEE.
Manikonda, L. and De Choudhury, M. (2017). Modeling
and understanding visual attributes of mental health
disclosures in social media. In Proceedings of the
2017 CHI Conference on Human Factors in Comput-
ing Systems, pages 170–181. ACM.
Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013).
Efficient estimation of word representations in vector
space. arXiv preprint arXiv:1301.3781.
Miller, G. A. (1995). Wordnet: a lexical database for en-
glish. Communications of the ACM, 38(11):39–41.
Mitchell, A. J., Vaze, A., and Rao, S. (2009). Clinical diag-
nosis of depression in primary care: a meta-analysis.
The Lancet, 374(9690):609–619.
Nutt, D., Wilson, S., and Paterson, L. (2008). Sleep dis-
orders as core symptoms of depression. Dialogues in
clinical neuroscience, 10(3):329.
Oquab, M., Bottou, L., Laptev, I., and Sivic, J. (2014).
Learning and transferring mid-level image represen-
tations using convolutional neural networks. In Pro-
ceedings of the IEEE conference on computer vision
and pattern recognition, pages 1717–1724.
Organization, W. H. et al. (2017). Depression and other
common mental disorders: global health estimates.
2017. Links.
Pan, S. J. and Yang, Q. (2010). A survey on transfer learn-
ing. IEEE Transactions on knowledge and data engi-
neering, 22(10):1345–1359.
Panda, R., Zhang, J., Li, H., Lee, J.-Y., Lu, X., and Roy-
Chowdhury, A. K. (2018). Contemplating visual emo-
tions: Understanding and overcoming dataset bias. In
European Conference on Computer Vision.
Park, M., Cha, C., and Cha, M. (2012). Depressive moods
of users portrayed in twitter. In Proceedings of the
ACM SIGKDD Workshop on healthcare informatics
(HI-KDD), volume 2012, pages 1–8. ACM New York,
NY.
Ramirez-Esparza, N., Chung, C. K., Kacewicz, E., and Pen-
nebaker, J. W. (2008). The psychology of word use in
depression forums in english and in spanish: Texting
two text analytic approaches. In ICWSM.
Reece, A. G. and Danforth, C. M. (2017). Instagram pho-
tos reveal predictive markers of depression. EPJ Data
Science, 6(1):15.
Simonyan, K. and Zisserman, A. (2014). Very deep con-
volutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556.
Sun, J. (2012). ‘jieba’chinese word segmentation tool.
Thrun, S. (1996). Is learning the n-th thing any easier than
learning the first? In Advances in neural information
processing systems, pages 640–646.
Wu, M. Y., Shen, C.-Y., Wang, E. T., and Chen, A. L.
(2018). A deep architecture for depression detection
using posting, behavior, and living environment data.
Journal of Intelligent Information Systems, pages 1–
20.
Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. (2014).
How transferable are features in deep neural net-
works? In Advances in neural information processing
systems, pages 3320–3328.
DATA 2019 - 8th International Conference on Data Science, Technology and Applications
40