twofold. First, we applied GA to community
detection in PPI networks. Second, we defined a
specific mutation operator adapted to the considered
biological problem. Dense communities existing in
the network structure are obtained at the end of the
algorithm by selectively exploring the search space,
without the need to know in advance the community
size. The experimental results showed the ability of
our approach to correctly detect communities having
different sizes. Future research will aim at modifying
the proposed fitness function for example by adding
the modularity value and applying multi-objective
optimization to improve the quality of the results.
ACKNOWLEDGEMENTS
We would like to show our gratitude to Dr. Walid
BEDHIAFI (Laboratoire de Génétique Immunologie
et Pathologies Humaines, Université de Tunis El
Manar ) for assistance to comprehend the biological
fields and for the interpretation of the results.
REFERENCES
Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler,
H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight,
S.S., Eppig, J.T., Harris, M.A., Hill, D.P., Issel-Tarver,
L., Kasarskis, A., Lewis, S., Matese, J.C., Richardson,
J.E., Ringwald, M., Rubin, G.M., Sherlock, G., 2000.
Gene ontology: tool for the unification of biology. The
Gene Ontology Consortium. Nat. Genet. 25, 25–29.
Atay, Y., Koc, I., Babaoglu, I., Kodaz, H., 2017.
Community detection from biological and social
networks: A comparative analysis of metaheuristic
algorithms. Applied Soft Computing 50, 194–211.
Becker, K.G., White, S.L., Muller, J., Engel, J., 2000.
BBID: the biological biochemical image database.
Bioinformatics 16, 745–746.
Ben M’barek, M., Borgi, A., Bedhiafi, W., Ben Hmida, S.,
2018. Genetic Algorithm for Community Detection in
Biological Networks. Procedia Computer Science,
Knowledge-Based and Intelligent Information &
Engineering Systems: Proceedings of the 22nd
International Conference, KES-2018, Belgrade, Serbia
126, 195–204.
Croft, D., O’Kelly, G., Wu, G., Haw, R., Gillespie, M.,
Matthews, L., Caudy, M., Garapati, P., Gopinath, G.,
Jassal, B., Jupe, S., Kalatskaya, I., Mahajan, S., May,
B., Ndegwa, N., Schmidt, E., Shamovsky, V., Yung, C.,
Birney, E., Hermjakob, H., D’Eustachio, P., Stein, L.,
2011. Reactome: a database of reactions, pathways and
biological processes. Nucleic Acids Res. 39, D691-697.
Fortunato, S., Hric, D., 2016. Community detection in
networks: A user guide. Physics Reports 659, 1–44.
Girvan, M., Newman, M.E.J., 2002. Community structure
in social and biological networks. Proc. Natl. Acad. Sci.
U.S.A. 99, 7821–7826.
Goldberg, D. E., 1989. Genetic Algorithms in Search,
Optimization and Machine Learning, 1st ed. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA,
USA.
Goldberg, D. E., Deb, K., 1991. A comparative analysis of
selection schemes used in genetic algorithms, in:
Foundations of Genetic Algorithms. Morgan
Kaufmann, pp. 69–93.
Green, M. L., Karp, P.D., 2005. Genome annotation errors
in pathway databases due to semantic ambiguity in
partial EC numbers. Nucleic Acids Res 33, 4035–4039.
Guo, X., Liu, R., Shriver, C.D., Hu, H., Liebman, M.N.,
2006. Assessing semantic similarity measures for the
characterization of human regulatory pathways.
Bioinformatics 22, 967–973.
Hill, D.P., Smith, B., McAndrews-Hill, M.S., Blake, J.A.,
2008. Gene Ontology annotations: what they mean and
where they come from. BMC Bioinformatics 9, S2.
Jia, G., Cai, Z., Musolesi, M., Wang, Y., Tennant, D.A.,
Weber, R.J.M., Heath, J.K., He, S., 2012. Community
Detection in Social and Biological Networks Using
Differential Evolution, in: Hamadi, Y., Schoenauer, M.
(Eds.), Learning and Intelligent Optimization, Lecture
Notes in Computer Science. Springer Berlin
Heidelberg, pp. 71–85.
Jiang, J. J., Conrath, D.W., 1997. Semantic Similarity
Based on Corpus Statistics and Lexical Taxonomy.
arXiv:cmp-lg/9709008
Kanehisa, M., Goto, S., 2000. KEGG: kyoto encyclopedia
of genes and genomes. Nucleic Acids Res. 28, 27–30.
Lin, D., 1998. An Information-Theoretic Definition of
Similarity. In Proceedings of the 15th International
Conference on Machine Learning. Morgan Kaufmann,
pp. 296–304.
Liu, X., Li, D., Wang, S., Tao, Z., 2007. Effective
Algorithm for Detecting Community Structure in
Complex Networks Based on GA and Clustering, in:
Shi, Y., Albada, G.D. van, Dongarra, J., Sloot, P.M.A.
(Eds.), Computational Science – ICCS 2007, Lecture
Notes in Computer Science. Springer Berlin
Heidelberg, pp. 657–664.
Mering, C. von, Huynen, M., Jaeggi, D., Schmidt, S., Bork,
P., Snel, B., 2003. STRING: a database of predicted
functional associations between proteins. Nucl. Acids
Res. 31, 258–261.
National Human Genome Research Institute (NHGRI),
2015. Biological Pathways Fact Sheet. National Human
Genome Research Institute (NHGRI).
Newman, M.E.J., Girvan, M., 2004. Finding and evaluating
community structure in networks. Physical Review E
69.
Nishimura, D., 2001. BioCarta. Biotech Software &
Internet Report 2, 117–120.
Pesquita, C., Faria, D., Falcão, A.O., Lord, P., Couto, F.M.,
2009. Semantic Similarity in Biomedical Ontologies.
PLoS Comput Biol 5.
Genetic Algorithm to Detect Different Sizes’ Communities from Protein-Protein Interaction Networks
369