Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, pages
1701–1713. ACM.
Hybrid-analysis (2014). Free automated malware analysis
service. https://www.hybrid-analysis.com/. Accessed:
2018-12-22.
JSEcoin (2017). Jsecoin: Digital currency - designed for
the web. https://jsecoin.com/. Accessed: 2018-12-09.
Kim, K. and Moon, B.-R. (2010). Malware detection
based on dependency graph using hybrid genetic al-
gorithm. In Proceedings of the 12th annual confer-
ence on Genetic and evolutionary computation, pages
1211–1218. ACM.
Kingma, D. P. and Ba, J. (2014). Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.
Konoth, R. K., van Wegberg, R., Moonsamy, V., and Bos,
H. (2019). Malicious cryptocurrency miners: Status
and outlook. arXiv preprint arXiv:1901.10794.
Krishnan, H. R., Saketh, S. Y., and Vaibhav, V. T. M. (2015).
Cryptocurrency mining-transition to cloud. Interna-
tional Journal of Advanced Computer Science and Ap-
plications, 6(9):115–124.
Lyda, R. and Hamrock, J. (2007). Using entropy analysis to
find encrypted and packed malware. IEEE Security &
Privacy, 5(2).
MalShare (2013). Malware repository providing re-
searchers access to samples. https://malshare.com/.
Accessed: 2018-12-22.
Metz, C. E. (1978). Basic principles of roc analysis. In
Seminars in nuclear medicine, volume 8, pages 283–
298. Elsevier.
Microsoft (1991). Peering inside the pe: A tour of the
win32 portable executable file format. https://msdn.
microsoft.com/en-us/library/ms809762.aspx. Ac-
cessed: 2018-12-09.
Moser, A., Kruegel, C., and Kirda, E. (2007). Limits of
static analysis for malware detection. In Computer
security applications conference, 2007. ACSAC 2007.
Twenty-third annual, pages 421–430. IEEE.
Musavi, M. T., Ahmed, W., Chan, K. H., Faris, K. B., and
Hummels, D. M. (1992). On the training of radial
basis function classifiers. Neural networks, 5(4):595–
603.
Ninite (2009). Install or update multiple apps at once. https:
//ninite.com/. Accessed: 2018-12-22.
Pal, M. (2005). Random forest classifier for remote sensing
classification. International Journal of Remote Sens-
ing, 26(1):217–222.
Pastrana, S. and Suarez-Tangil, G. (2019). A first look at
the crypto-mining malware ecosystem: A decade of
unrestricted wealth. arXiv preprint arXiv:1901.00846.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V., Vanderplas, J., Passos,
A., Cournapeau, D., Brucher, M., Perrot, M., and
Duchesnay, E. (2011). Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.
Rauchberger, J., Schrittwieser, S., Dam, T., Luh, R., Buhov,
D., P
¨
otzelsberger, G., and Kim, H. (2018). The other
side of the coin: A framework for detecting and ana-
lyzing web-based cryptocurrency mining campaigns.
In Proceedings of the 13th International Conference
on Availability, Reliability and Security, page 18.
ACM.
Riedmiller, M. (1994). Advanced supervised learning
in multi-layer perceptrons—from backpropagation to
adaptive learning algorithms. Computer Standards &
Interfaces, 16(3):265–278.
Roundy, K. A. and Miller, B. P. (2010). Hybrid analysis
and control of malware. In International Workshop on
Recent Advances in Intrusion Detection, pages 317–
338. Springer.
Saad, M., Khormali, A., and Mohaisen, A. (2018). End-
to-end analysis of in-browser cryptojacking. arXiv
preprint arXiv:1809.02152.
Sari, A. and Kilic, S. (2017). Exploiting cryptocurrency
miners with oisnt techniques. Transactions on Net-
works and Communications, 5(6):62.
Swan, M. (2015). Blockchain: Blueprint for a new econ-
omy. ” O’Reilly Media, Inc.”.
Tahir, R., Huzaifa, M., Das, A., Ahmad, M., Gunter, C.,
Zaffar, F., Caesar, M., and Borisov, N. (2017). Min-
ing on someone else’s dime: Mitigating covert min-
ing operations in clouds and enterprises. In Interna-
tional Symposium on Research in Attacks, Intrusions,
and Defenses, pages 287–310. Springer.
Wang, L. (2005). Support vector machines: theory and ap-
plications, volume 177. Springer Science & Business
Media.
Xu, B., Wang, N., Chen, T., and Li, M. (2015). Empiri-
cal evaluation of rectified activations in convolutional
network. arXiv preprint arXiv:1505.00853.
Yang, R. R., Kang, V., Albouq, S., and Zohdy, M. A. (2015).
Application of hybrid machine learning to detect and
remove malware. Transactions on Machine Learning
and Artificial Intelligence, 3(4):16.
Zabidi, M. N. A., Maarof, M. A., and Zainal, A. (2012).
Malware analysis with multiple features. In Com-
puter Modelling and Simulation (UKSim), 2012 UK-
Sim 14th International Conference on, pages 231–
235. IEEE.
Hunting Traits for Cryptojackers
393