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Abstract: This paper will examine the possibility of real-time risk calculations within the financial services industry. 
Due to regulatory standards, this paper will focus mainly on the calculations of value-at-risk (VaR) and 
expected shortfall (ES). Their computation currently requires simplified theory in order to be done within 
real-time. This demonstrates a real-world disadvantage to investment professionals since they need to 
comply with regulatory requirements when doing real-time decisions without knowing the accurate risk 
numbers at any one time. Within the CloudDBAppliance project, we designed an architecture that shall 
make real-time risk monitoring possible using cloud computing and a fast analytical processing platform. 

1 INTRODUCTION 

The financial services industry is heavily dependent 
on risk simulations and calculations. This is even 
more true in todays world since financial markets 
change their behavior quicker and more drastically. 
Regulatory entities, such as the German BaFin, 
require finacial service providers to submit risk 
figures such as value-at-risk (VaR) and may require 
the submition of expected shortfall (ES) in the near 
future. Due to their high complexity, it is common 
practice to compute these figures in overnight batch 
processes. Therefore, in between, investment 
professionals need to estimate the according risk 
measures and complete the decision-making process 
without a clear understanding of their current 
posistions. This presents an issue since the trader 
opens and closes positions due to his perceived risk-
return profile. However, he does not know the 
effects of his trade on the entirety of the trading 
portfolios and the effects will only be calculated 
overnight. In a worst-case scenario, the trader opens 
a position on day t, the risk department computes at 
night that the risk is too large to be kept in the books 
and requires the trader to liquidate at a loss the next 
morning.  

The complexity of the risk calculations arises 
from a Mont-Carlo simulation. In order to complete 
this simulation, numerous statistics about financial 
products need to be estimated which adds to the 
computational requirements.  

Although financial service providers face 
different types of risks, we will focus only on market 
risk, that is, the risk of falling investment values. 
The remainder of the paper is structured as follows: 
The next chapter introduces into the risk evaluation 
task and discusses its computational complexity, 
section 3 deals with requirements analysis while 
section 4 introduces the platform architecture and 
section 5 presents conclusions. 

2 EXPLANATION OF RISK 
FIGURES 

In this chapter, we will have a look at how to 
interpret a given VaR or ES figure and list all data 
that is needed to do the calculations.  

2.1 Value-at-Risk and Expected 
Shortfall 

According to modern portfolio theory (Elton et al., 
2014) the cross-correlations between financial 
product’s prices have a big effect on the entire 
portfolio value. This is why investment professionals 
try to diversify risk by including uncorrelated or 
even negatively correlated instruments into their 
portfolio. This however, does not give the portfolio 
manager an idea of possible losses beyond 
deviations from the expected return. This is what 
VaR does. VaR is technically a percentile of the loss 
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distribution (Krokhmal et al., 2001) of an asset and 
as such, VaR is a function of the asset returns, a 
time-interval and a confidence level. VaR is stated in 
a way such as “The 10-day, 99% VaR is equal to 
72%”. Such a statement would mean that the risk 
manager is 99% confident that the portfolio will not 
lose more that 72% of its value within the next 10 
days. ES gives an estimation of the loss given that 
the loss exceeds the VaR. Continuing the above 
example, an ES of 98% would be interpreted as 
“Given that the loss is greater than 72%, the 
expected value for the loss is 98%”. The ES can also 
be translated as “There is a 1% chance of an event 
that yields an expected return of -98%”. 

2.2 Required Data 

In order to calculate the VaR, we need an 
appropriate length of price history. The variance-
covariance matrix needs to be calculated and a few 
parameters need to be chosen i.e. which simulation 
technique (Monte-Carlo-Simulation or historical 
simulation), the number of simulations and which 
distribution defines the given data best (in the case 
of the Monte-Carlo-Simulation). The last factor, the 
underlying distribution, can be estimated using the 
historical data as well.  

2.3 Mathematical Derivation of Value 
at Risk and Expected Shortfall 

In this article we will not discuss the selection of the 
most appropriate method and the problematic of the 
normal distribution assumption and refer to (Jorion, 
2006) and (Embrecht et al., 2005). We decided to 
exclude the parametric approach and instead use a 
quantile function/distributional approach. We have 
to simulate return data and then deduct information 
from the simulated distributions. While Engle, 
Manganelli (Engle and Manganelli, 2001) state VaR 
as the solution to  
 

Prሾݕ௧ ൏ െܸܴܽ௧|ߗ௧ିଵሿ ൌ  ,ߠ	
 

where ݕ௧ is the loss at time t, ߗ௧ିଵis all the collected 
information at the time prior to the calculation and 
theta is the desired confidence level, Ziegel (2013) 
describes VaR as the solution of  
 

ܸܴܽఏሺܻሻ ൌ inf	ሼݔ ∈ Թ|ܨ௒ሺݔሻ ൒  ,ሽߠ
 

with ܨ௒ being the cumulative distribution function of 
the return distribution.  

Assuming that we managed to compute the VaR 
number for a given return distribution, we can easily 
compute the ES using a simple mean over all 

simulated returns that breach the VaR figure. 
Therefore, the ES is given by 
 

௧ܵܧ ൌ ݔሼ݃ݒܽ ∈ |௧ݕ െ ݔ ൏ ܸܴܽ௧ሽ, 
 

where ݕ௧ is used as described above.  
As already discussed, there are two main 

simulation methods for generating the returns, from 
which the quantile functions can start. Because the 
historical simulation takes the actual past price 
history for scenario building, it is heavily dependent 
on the assumption that the training data is 
representative for the underlying asset’s overall 
returns. In the crucial case of stress scenarios that 
never happened before it will thus underestimate the 
risk.  

This problem is solved by the Monte-Carlo 
simulation, which estimates the underlying 
distribution and generates thousands of simulated 
future scenario based on it. The quantile functions 
then calculate the risk figures based on the 
distribution of the future scenarios. The academic 
literature tends to link the Student’s t-distribution to 
capital market returns (Harris, 2017), so the risk 
manager has been given a hint about which 
distribution to use.  

2.4 Calculation Efficiency 

Next, we will look at the runtime of a VaR 
calculation based on a Monte-Carlo simulation. We 
will see where the trade-off between speed and 
accuracy of the calculation arises.  

The first factor to consider when talking about 
the runtime of a VaR calculation is the size of the 
training data. As discussed above we only need the 
asset returns for the calculations. The length of the 
training data and the number of assets within the 
portfolio increase the size of the training data 
linearly. Obviously, a portfolio with x assets and a 
training data set of the most recent T asset returns 
has ݔ ൈ ܶ  data points. The training data can be 
represented in a matrix  

 

ܴ ∶ൌ ሺݎ௫,௧ሻ௫,௧ 
 

where ܺ߳ݔ and ߳ݐሾ1, ܶሿ and ሺݎ௫,௧ሻ௫,௧  is the return of 
asset x at time t.  

The next factor to consider is the variance-
covariance matrix. If our portfolio includes x assets, 
the variance-covariance matrix will be ݔ ൈ ݔ -
dimensional and therefore, it has ݔଶ entries with the 
single asset’s variance on the main diagonal and the 
covariance of asset i and j in the i-th row and j-th 
column. Obviously, the variance-covariance matrix 
is symmetrical, since the covariance function is 
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symmetrical. With ݔଶ  entries in a symmetrical 
matrix we need to calculate ሺݔଶ െ ሻ/2ݔ  entries, 
which grows quadratically with an additional asset 
in the portfolio. Next, we look at the necessary 
number of computations for the variance and 
covariance. Using the regular formula for the two 
statistics, we get  
 

,௜ݔሺݒ݋ܥ ௝ሻݔ ∶ൌ ॱሺቀݎ௜,௧ െ ॱሺݎ௜ሻቁ ∗ ቀݎ௝,௧ െ ॱ൫ݎ௝൯ቁሻ 
 

and 
 

௜ሻݔሺݎܸܽ ∶ൌ ॱሺሺݎ௜,௧ െ ॱሺݎ௜ሻሻଶሻ, 
 

where ॱ is the expectation operator and ݎ௜,  ௝ are theݎ
returns of two assets within the portfolio. The 
expectation operator requires linear runtime over the 
length of the training data. If the training data has 
length T, then the variance requires 2ܶଶ ൅ ܶ 
calculations. The covariance requires 4ܶଶ ൅ ܶ 
calculation because two different variables are 
observed. This leads to a computational effort of  
 

ሺݔ െ 1ሻଶ ∗
4ܶଶ ൅ ܶ

2
൅ ሺ2ܶଶݔ ൅ ܶሻ 

 

for the entire variance-covariance matrix using the 
standard equations and a brute force approach for 
calculating them.  

The next step in calculating the VaR is 
estimation of the underlying distribution. 
Independently from the chosen distribution the 
simulation of a vector  
 

 Թ௡	߳	ݎ̃
 

which is the generated returns of the simulated 
future of length n. If the returns in the training data 
are daily returns then the simulated future of length 
n would be appropriate for a n-day VaR. This 
procedure needs to be repeated multiple times for a 
simulation. The sum of each individual vector ̃ݎ is 
the overall return of the portfolio over the required 
time-period. Any function of the ones shown above 
can be used to calculate the required percentile of 
the sums of the ̃ݎ.  

This calculation requires a lot of computational 
runtime, mainly due to the quadratic growth of the 
variance-covariance matrix and the generation of the 
multivariate distribution. Furthermore, the number 
of simulated random vectors ̃ݎ should be very high. 
In fact, even though the size of the training data has 
an optimum unequal to the maximum, the number of 
simulated portfolio returns will always increase the 
accuracy of the VaR figure. An increased number of 
simulated return vectors however, increases the 
computational requirements as well. Yet, the 

computations of all ̃ݎ is the same and in fact, need to 
be independent from each other (that is, the 
generation of one random return vector must not 
depend on the generation of another random return 
vector). Therefore, a parallel computation of the 
random return vectors will decrease the runtime in a 
very efficient manner because the calculations of the 
random return vectors can the distributed to all 
processors equally. Furthermore, there exist efficient 
parallel algorithms to compute the variance and the 
covariance much more efficiently.  

3 REQUIREMENTS ANALYSIS 

The real-time risk monitoring for investment 
banking use case shall implement a risk assessment 
application that does, on the one hand, comply with 
regulatory requirements of the financial supervisory 
authorities, and on the other hand, speeds up the risk 
valuation. That is, it can be used intraday not only 
for regularly or ad-hoc queries, but even for pre-
trade analysis of potentially new trades before the 
traders actually give the order. 

3.1 Use Case Analysis 

Two types of human actors will interact with the risk 
monitoring platform: 

The Risk Controller will have access on all use 
cases, i.e. the calculation of risk measures (VaR and 
ES) as well as the corresponding sensitivities. The 
pre-trade analysis may be triggered by the Risk 
Controller as well as by the Trader who has just 
detected an investment opportunity and would like 
to evaluate the portfolio risk as if the new trade was 
already carried out. This is what the ‘what-if’ 
analysis will compute. 

 

 

Figure 1: Risk monitoring use case diagram. 

The other two actors depicted in the above 
diagram represent the pricing engine and the  
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Figure 3: Activity diagram. 

scenario engine that carry out the calculations as 
described in section 2, but can be replaced by 
instances using other calculation approaches.  

While the scenario engine contains simulated 
risk factors the pricing engine is a program that 
makes real time price calculations based on real time 
market data. 

3.2 Input and Output Streams 

The basis for every risk evaluation is the trade 
history, consisting of string variables identifying the 
currently open positions and past closed positions, in 
combination with the history of market price data. 
The result is a time series of numeric returns of the 
portfolio that will serve as input for the pricing 
engine that will generate a sufficient number of 
pricing scenarios in order to put the risk valuation on 
a profound basis. The resulting returns are deducted 
from the price data input, which is a time series of 
the most recent bid and ask prices. Due to the real-
time character of the data, each position within the 
portfolio will generate new numeric data every tick, 
i.e. every time a new price for the security is 
available. The pricing engine will average all prices 
within one second in order to generate an evenly 
spaced data-stream. In case of no price change 
within a one-second period, the most recent price 
will be used. The input and output streams depicted 
in figure 2 below consist of: 
 

Open Positions: The basis for every risk evaluation 
is the trade history, consisting of currently open 
positions and past closed positions, in combination 
with the history of market price data. All currently 
open positions and their relative amount held form 
the portfolio. The relative amount held is stored as 
numeric data and will be called ‘weight of the 
position’. The result is a time series of returns of the 

portfolio that will serve as input for the pricing 
engine that will generate a sufficient number of 
pricing scenarios in order to put the risk valuation on 
a profound basis. We estimate ‘sufficient’ to be no 
less than 20.000 scenarios in regular financial 
market times but much higher numbers during 
stressed scenarios reaching 100.000 scenarios and 
more. The estimate of 20.000 scenarios follows from 
analyses of the stability of the risk calculation.  
 

Potential New Trade: In order to provide also pre-
trade analysis, the trader may enter the position 
he/she may intend to enter and may start a what-if 
analysis that evaluates the changes of the risk 
measure that would be caused by this additional 
trade. 

On the output side we receive the risk measures 
VaR and ES for the current portfolio together with 
their sensitivities to a range of parameters. 

In case that a pre-trade analysis was triggered the 
output will consist of the newly calculated risk 
measures VaR and ES for the expanded portfolio 
(what-if-scenario VaR). 
 

 

Figure 2: Inputs and Outputs. 

3.3 Activity Diagram 

The sequence of operations is rather straightforward, 
as can be seen from figure 3 above. From the login 
of the risk controller or trader up to the calculation 
of the VaR and ES risk measures the internal task 
sequence depends on the availability of pricing 
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information. If pricing scenarios exist, the risk 
measures VaR and ES can be calculated directly. 
Otherwise, a sufficient number of price scenarios 
has to be generated and fetched. Subsequently, the 
related sensitivities are computed with respect to a 
given set of parameters. If a new pre-trade analysis 
is requested, the risk measure of the existing 
portfolio has to be updated in the same way, before 
the additional trade will be added and the new risk 
measures are calculated incrementally. 

4 PLATFORM ARCHITECTURE 

In the real-time risk monitoring use case, we aim to 
develop a solution capable of doing highly non-
linear financial risk computation on a large portfolio 
of trades changing in real-time (new trades coming 
in, what-if scenarios, etc.). The goal is to utilize in-
memory capabilities of the solution to avoid 
expensive brute-force re-computations and make it 
possible to both compute risks much faster but also 
to allow marginal computations of risk for new 
incoming transactions. The risk monitoring 
application is designed to use fast analytical and 
streaming processing capabilities of third-party 
systems, i.e. the Big Data Analytics Engine, the 
Operational DB and the Streaming Analytics Engine 
shown in figure 4 below. 
 

 

Figure 4: Use case architecture and data flow. 

The input data streams are located at the bottom 
of the diagram. The real time market data is one 
high frequency data stream of financial price data 

for stocks, bonds, futures, currencies, etc. as offered 
by numerous providers like Bloomberg, Reuters, or 
Metastock. The task of the streaming analytics 
engine is to filter only those assets that are contained 
in the current portfolio and to align all incoming data 
into streams with synchronous time stamps (e.g. on 
1 second basis). This is a prerequisite for the 
calculation of the variance-covariance matrix. 

The aligned data is then stored in the 
operational data base and immediately passed 
through into the Big Data Analytics Engine. The 
Analytics Engine can be configured via a GUI 
where also the results are presented to the user. 

Concerning the second type of input, the trade 
history, we can distinguish between order data and 
portfolio data. The order data consists of all trades 
and is derived directly from the electronic order 
platform. Each broker offers a dedicated order 
platform where traders enter the new trades that are 
then instantaneously forwarded to the account held 
by the broker. The portfolio data is entered by the 
risk manager directly from the GUI and contains 
information about the asset allocation of the 
portfolio.  

The Portfolio Input-Steam is an API dedicated 
to the storage of the order and portfolio data in the 
data base. 

Finally, the Parameter Input-Stream is fed 
from the GUI and contains all parameters for the 
scenario generation that usually remain fixed, but 
might be subject to change in the case that the risk 
controller needs to make adjustments. 

5 CONCLUSION 

The presented risk monitoring use case is a data-
intensive application in a critical infrastructure. It 
does not require many different functionalities, but 
focusses on a central aspect in the daily risk 
management procedures of banks and financial 
institutes. 

The challenge of the application lies in the 
computational complexity of the calculation of the 
risk measures. This is where it will exploit the 
capabilities of the underlying existing big data and 
streaming analytics platforms. Using the projects’ 
platforms, it will be possible to calculate risk figures 
in real-time and therefore prevent the trader from 
entering into trades that yield a harmful risk 
structure. 

The chosen architecture design is kept modular 
and will allow for the replacement of single 
components, either on the side of data base or 
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analytical platform, but also with respect to the data 
sources like the real time market data feed or 
electronic order platform by simply replacing the 
interface. This will keep the design sustainable and 
open for future extensions of requirements. 
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