ACKNOWLEDGMENTS
We are grateful to Emitza Guzman and Mario Sanger
for sharing their review datasets. This research was
supported by the institutional research grant IUT20-
55 of the Estonian Research Council and the Estonian
Center of Excellence in ICT research (EXCITE).
REFERENCES
Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent
dirichlet allocation. Journal of machine Learning re-
search, 3(Jan):993–1022.
Collobert, R., Weston, J., Bottou, L., Karlen, M.,
Kavukcuoglu, K., and Kuksa, P. (2011). Natural lan-
guage processing (slmost) from scratch. Journal of
Machine Learning Research, 12(Aug):2493–2537.
Groen, E. C., Kopczyska, S., Hauer, M. P., Krafft, T. D.,
and Doerr, J. (2017). Users the hidden software prod-
uct quality experts?: A study on how app users re-
port quality aspects in online reviews. In 2017 IEEE
25th International Requirements Engineering Confer-
ence (RE), pages 80–89.
Guzman, E., Aly, O., and Bruegge, B. (2015). Retrieving
diverse opinions from app reviews. In Proceedings of
ESEM’15, pages 1–10. IEEE.
Guzman, E. and Maalej, W. (2014). How do users like
this feature? a fine grained sentiment analysis of app
reviews. In Proceedings of RE’14, pages 153–162.
IEEE.
Johann, T., Stanik, C., B., A. M. A., and Maalej, W. (2017).
Safe: A simple approach for feature extraction from
app descriptions and app reviews. In Proceedings of
RE’17, pages 21–30. IEEE.
Kang, Y. and Zhou, L. (2017). Rube: Rule-based methods
for extracting product features from online consumer
reviews. Information & Management, 54(2):166–176.
Keertipati, S., Savarimuthu, B. T. R., and Licorish, S. A.
(2016). Approaches for prioritizing feature improve-
ments extracted from app reviews. In Proceedings of
EASE’16, page 33. ACM.
Kurtanovi
´
c, Z. and Maalej, W. (2017). Automatically clas-
sifying functional and non-functional requirements
using supervised machine learning. In Proceedings
of RE’17, pages 490–495. IEEE.
Lafferty, J., McCallum, A., and Pereira, F. (2001). Con-
ditional random fields: Probabilistic models for seg-
menting and labeling sequence data. In Proceedings
of ICML’01, pages 282–289.
Liu, P., Joty, S. R., and Meng, H. M. (2015). Fine-grained
opinion mining with recurrent neural networks and
word embeddings. In Proceedings of EMNLP’15,
pages 1433–1443.
Lu, M. and Liang, P. (2017). Automatic classification
of non-functional requirements from augmented app
user reviews. In Proceedings of EASE’17, pages 344–
353. ACM.
Luiz, W., Viegas, F., Alencar, R., Mour
˜
ao, F., Salles,
T., Carvalho, D., Gonc¸alves, M. A., and Rocha,
L. (2018). A feature-oriented sentiment rating for
mobile app reviews. In Proceedings of WWW’18,
pages 1909–1918, Republic and Canton of Geneva,
Switzerland. International World Wide Web Confer-
ences Steering Committee.
Maalej, W., Nayebi, M., Johann, T., and Ruhe, G. (2016).
Toward data-driven requirements engineering. IEEE
Software, 33(1):48–54.
Malik, H., Shakshuki, E. M., and Yoo, W.-S. (2018). Com-
paring mobile apps by identifying hot features. Future
Generation Computer Systems.
Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and
Dean, J. (2013). Distributed representations of words
and phrases and their compositionality. In Proceed-
ings of NIPS’13, pages 3111–3119.
Pagano, D. and Maalej, W. (2013). User feedback in the
appstore: An empirical study. In Proceedings of
RE’13, pages 125–134. IEEE.
Panichella, S., Di Sorbo, A., Guzman, E., Visaggio, C. A.,
Canfora, G., and Gall, H. C. (2015). How can i im-
prove my app? classifying user reviews for software
maintenance and evolution. In Proceedings of IC-
SME’15, pages 281–290. IEEE.
Pavlopoulos, J. and Androutsopoulos, I. (2014). Aspect
term extraction for sentiment analysis: New datasets,
new evaluation measures and an improved unsuper-
vised method. In Proceedings of the 5th Workshop on
Language Analysis for Social Media, pages 44–52.
Pontiki, M., Galanis, D., Papageorgiou, H., Androutsopou-
los, I., Manandhar, S., AL-Smadi, M., Al-Ayyoub,
M., Zhao, Y., Qin, B., De Clercq, O., et al. (2016).
Semeval-2016 task 5: Aspect based sentiment anal-
ysis. In Proceedings of SemEval’16, pages 19–30.
ACL.
Poria, S., Cambria, E., and Gelbukh, A. (2016). Aspect ex-
traction for opinion mining with a deep convolutional
neural network. Knowledge-Based Systems, 108:42–
49.
S
¨
anger, M., Leser, U., Kemmerer, S., Adolphs, P., Klinger,
R., Calzolari, N., Choukri, K., Declerck, T., Grobel-
nik, M., and Maegaard, B. (2016). Scare-the senti-
ment corpus of app reviews with fine-grained annota-
tions in german. In Proceedings of LREC’16.
Shah, F. A., Sabanin, Y., and Pfahl, D. (2016). Feature-
based evaluation of competing apps. In Proceedings of
the International Workshop on App Market Analytics,
pages 15–21. ACM.
Vu, P. M., Nguyen, T. T., Pham, H. V., and Nguyen,
T. T. (2015). Mining user opinions in mobile app re-
views: A keyword-based approach. In Proceedings of
ASE’15, pages 749–759. IEEE.
Zamani, S., Lee, S. P., Shokripour, R., and Anvik, J.
(2014). A noun-based approach to feature location us-
ing time-aware term-weighting. Information and Soft-
ware Technology, 56(8):991–1011.
Zhang, L. and Liu, B. (2014). Aspect and entity extraction
for opinion mining. In Data Mining and Knowledge
Discovery for Big Data, pages 1–40. Springer.
ICSOFT 2019 - 14th International Conference on Software Technologies
396