
“Open Weakness and Vulnerability Modeler” (OVVL): An Updated

Approach to Threat Modeling

Andreas Schaad and Tobias Reski
Department of Media and Information, University of Applied Sciences Offenburg,

Badstraße 24, 77652 Offenburg, Germany

Keywords: Threat Analysis, Architecture, Security, Risk Assessment.

Abstract: The development of secure software systems is of ever-increasing importance. While software companies

often invest large amounts of resources into the upkeeping and general security properties of large-scale

applications when in production, they appear to neglect utilizing threat modeling in the earlier stages of the

software development lifecycle. When applied during the design phase of development, and continuously

throughout development iterations, threat modeling can help to establish a “Secure by Design” approach. This

approach allows issues relating to IT security to be found early during development, reducing the need for

later improvement – and thus saving resources in the long term. In this paper the current state of threat

modeling is investigated. This investigation drove the derivation of requirements for the development of a

new threat modelling framework and tool, called OVVL. OVVL utilizes concepts of established threat

modeling methodologies, as well as functionality not available in existing solutions.

1 INTRODUCTION

With the globalization of software infrastructure and

the resulting increase in user numbers, designing and

developing secure software and software

architectures is of ever-increasing importance. When

neglected, overlooked errors can result in severe

financial and reputational losses. Because the

sophistication of attacks is increasing, designing

distributed systems with security concerns already in

mind from the beginning onwards (Security by

Design) is crucial. In this context, threat modeling can

be a useful tool for conducting an informed analysis

of the security risks inherent to a software system. In

an ideal setting, threat modeling is utilized in parallel

to the overall development lifecycle. While many

paper-based resources detailing threat modeling

processes are available, tools offering automated

threat modeling support are few, rarely free, as well

as technically lacking in several areas. As a result,

integrating threat modeling into the development

process appears to project managers and developers

as tedious, unnecessary, and generally hard to do.

Improving the current state of threat modeling and

lowering the barrier of entry for its integration in

software projects is our goal and our efforts so far are

documented in this paper. We analyzed existing tools

and made suggestions for possible improvements.

These observed improvements were implemented in

form of a new threat modeling tool we call OVVL –

the “Open Weakness and Vulnerability Modeler”:

 An open-source web application framework for

threat modelling, based on a user centric

minimalistic design and color scheme;

 Based on an analysis of existing threat

modelling approaches and tools;

 Delivering a tight and efficient integration of

public data sources such as the NIST NVD;

 Including a notion of comparing analyzed

architecture versions;

 Suggesting more fine-grained mitigations on

basis of details a user has about architecture

components and software makes;

 Offering a modular architecture to integrate

related methodologies such as attack trees or

misuse cases;

 Providing initial support for GDPR compliance

checks;

 Defining APIs to consume data in the next

stages of the secure development process;

Schaad, A. and Reski, T.
“Open Weakness and Vulnerability Modeler” (OVVL): An Updated Approach to Threat Modeling.
DOI: 10.5220/0007919004170424
In Proceedings of the 16th International Joint Conference on e-Business and Telecommunications (ICETE 2019), pages 417-424
ISBN: 978-989-758-378-0
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

417

2 BACKGROUND

“Security by Design” is an approach modern software

development should adopt as part of a dedicated

Secure Development Lifecycle (SDLC). In order to

ensure that a software system cannot be exploited

once it is in production, implementing dedicated

threat and risk assessment processes during the

overall system lifecycle is crucial.

2.1 Threat Modeling

Threat modeling is a parallel activity to risk

assessment. It is a systematic approach to build a

structured representation of a software system and its

required security properties, resulting in a general

overview over potential weaknesses a system faces.

This is done by modeling and analyzing the logical

entities of a system, after which potential

vulnerabilities and threats can be identified (Pandit,

2018). By rating their severity and impact, these

threats can then aid in the risk assessment process.

One possible way to build a threat model (Pandit,

2018) is by applying the following steps (Secodis

GmbH, 2018):

1. Decomposing an application into modular

entities by identifying its assets (e.g. Web-

Application, Database).

2. Creating a data flow diagram (DFD) outlining

the structure and communication flow of assets

by breaking them down into their sub-

components, if applicable. The resulting

elements are displayed in the DFD as

interactors, processes or data stores (Ma and

Schmittner, 2016). Sections within the DFD, in

which data processing changes its trust level, are

visualized in the model as trust boundaries (Ma

and Schmittner, 2016; Stavroulakis and Stamp,

2010).

3. Identifying and modeling of all possible threats

(e.g. by applying STRIDE as discussed in

section 2.2), even if they cannot (yet) be

exploited (Myagmar, Lee and Yurcik, 2005).

4. Prioritizing threats by rating their severity.

5. Deriving steps that can be taken to mitigate

threats.

6. Continuously improving the model and its

derived threats, depending on changes in a

systems architecture.

Due to its modular approach, threat modeling can be

applied not only to simple, but also to complex

systems. Since about 50% of security issues arise

from flaws in the initial design of an application

(Hoglund and McGraw, 2004), applying threat

modeling before or during the design phase can help

finding security issues early in the development

process. This ensures that resources can be assigned

more effectively during the actual development, since

it is more cost efficient to resolve issues before a

system is in development then after deployment.

Identifying threats early also helps to develop

“realistic and meaningful security requirements”

(Myagmar and Lee, 2005).

2.2 Stride

STRIDE is a threat modeling approach developed by

Microsoft (Kohnfelder and Garg, 2008) and is based

on the assumption, that threats software architectures

are susceptible to can be clustered (Shostack, 2008).

The STRIDE acronym stands for spoofing,

tampering, repudiation, information disclosure,

denial of service and elevation of privilege and as

such defines the threats a system might face

(Kohnfelder and Garg, 2008).

Table 1: STRIDE threats applied to DFD elements.

It must be noted that the mapping of STRIDE to DFD

elements is applied to generic elements. When

applied to more specific elements and communication

scenarios, this matrix (Table 1) should be fine-tuned

(Shostack, 2008); e.g. a data store might not always

be susceptible to denial of service attacks, but to

repudiation when implementing a log service.

2.3 CPE, CVE and CVSS

While STRIDE is used to gain a general threat

overview, knowing about explicit software

vulnerabilities improves a threat model further.

Elements in a DFD can be defined more clearly by

specifying a certain software make, for which

information about known vulnerabilities is stored and

accessible in public databases. Found vulnerabilities

Element
S

p
o

o
fi

n
g

T
a

m
p

er
in

g

R
ep

u
d

ia
ti

o
n

In
fo

rm
a

ti
o

n

D
is

cl
o

su
re

D
en

ia
l

o
f

S
er

v
ic

e

E
le

v
a

ti
o

n
 o

f

P
ri

v
il

eg
e

Interactors X X

Processes X X X X X X

Data Stores X X X

Data Flows X X X

SECRYPT 2019 - 16th International Conference on Security and Cryptography

418

can then be mitigated before they are exploited. Data

regarding software makes (CPE) and their

corresponding vulnerabilities (CVE) is provided by

the NIST Security Database (NVD).

CPE.

CPE stands for “Common Platform Enumeration”

and is a “structured naming scheme for information

technology systems, software and packages”

(National Vulnerability Database, 2018d). CPE’s are

meant to name software products in a standardized

manner. One CPE can be linked to only one Software.

For example, “Windows 10 1607 64-bit” CPE is

defined as (National Vulnerability Database, 2018b):

cpe: 2.3: o:microsoft:windows_10: 1607:∗:∗:∗:∗:∗: x64:∗

For each CPE, known software vulnerabilities can be

found in the form of CVE-References (“Common

Vulnerabilities and Exposures” (MITRE

Corporation, 2018)).

CVE.

CVE is a standardized system for referencing known

software vulnerabilities (National Vulnerability

Database, 2018a). CVE-References include, amongst

other things, a summary of the vulnerability, the date

the vulnerability was published, one or multiple CPE-

References and a CVSS (“Common Vulnerability

Scoring System” (FIRST.org Inc., 2018) score. A

CVE-Reference might be named in the following way

(National Vulnerability Database, 2018b):

𝐶𝑉𝐸 − 2018 − 8505

CVSS.
CVSS “provides a way to capture the principal

characteristics of a vulnerability and produces a

numerical score reflecting its severity” (FIRST.org

Inc., 2018). This score describes the impact of the

vulnerability. The severity of a vulnerability is based

on aspects like its attack complexity or its impact on

integrity and confidentiality. Each CVE-Reference

includes a CVSS score, which enables the ranking of

vulnerabilities.

2.4 Current Threat Modeling State

Members of SAFECode, a “global, industry-led effort

to identify and promote best practices for developing

and delivering more secure and reliable software,

hardware and services” define the current threat

modeling state the following way (Brown-White,

2017):

 While the demand for useful threat modeling

tools is ramping up, existing solutions do not

meet the requirements set by security specialists

to a sufficient extend.

 Only a few tools exist and come with a limited

guidance availability. This can make it harder

for teams to get started with threat modeling.

 Integrating threat modeling into existing

development processes can be challenging.

 Since most security issues only become a

concern when exploited, insight gained by threat

modeling might not immediately be seen as

useful.

2.5 Existing Tool Support

Many aspects of threat modeling can be automated or

supported by tools, which can make it easier to

integrate threat modeling into the development

lifecycle. During the course of our work, we

performed an extensive analysis of the free existing

tools, focusing on their features and on their user

experience (UX) design. By doing so, we aimed to

derive requirements for our own tool, and thus offer

an approach to threat modeling which significantly

improves upon the existing tools. Currently, there are

two free tools available. Microsoft’s TMT and the

OWASP ThreatDragon.

Microsoft Threat Modeling Tool (TMT).

Microsoft provides a free tool in the form of a

Windows desktop application. Its threat analysis is

based on the STRIDE methodology. TMT’s main

features include (Microsoft Threat Modeling Tool

2016):

1. Extensive documentation.

2. Creating DFDs manually.

3. Setting properties of DFD elements and adding

custom properties.

4. Listing potential STRIDE threats following an

automated DFD analysis.

5. Creating custom threats.

6. Manually prioritizing threats.

7. Exporting a CSV file of found threats.

8. Creating a threat report in form of a HTML file

As such, TMT covers most use cases related to threat

modeling, but it is lacking in several aspects. One

main drawback is the static behavior of custom

threats and element properties. Once set, they are only

applied to the respective element. Custom properties

“Open Weakness and Vulnerability Modeler” (OVVL): An Updated Approach to Threat Modeling

419

do not influence the threat analysis. More precisely,

even if the architect already knows about which

technology he will or has used, they cannot apply this

knowledge within the context of TMT.

Tracking of different model iterations is also not

supported, which makes tracking of threat mitigations

not possible within Microsoft’s tool. Additionally,

only making the tool available for Windows

platforms might constitute a barrier of entry for some

projects (Stack Overflow, 2018). The tool cannot be

further customized or adopted by the open-source

community.

Viewed from a UX standpoint, Microsoft’s TMT

might seem dated to some users. While our analysis

of the tools design was not based on formally defined

UX acceptance criteria, we were able to note that

Microsoft’s TMT design might seem dated to some

users. Especially when using TMT for the first time,

an overload of information can be off-putting – here,

a “Getting Started Guide” might aid a user in the

initial threat modeling process. The threat modeling

process itself seems to be, in our opinion, mostly well

thought out. TMT facilitates the placing of DFD

elements by Drag & Drop, which to us feels like an

intuitive approach. The way TMT links found threats

to their respective elements visually by highlighting

them, aids in understanding a threat model better.

When it comes to TMT’s layout in general, we

noticed a few lacking areas. Here, the way different

DFD elements and their sub-components are

displayed in one long, by default unfolded list, can

make it challenging to find certain elements during

the modeling process. This is further reinforced by the

boxed-in nature of the working area, where different

settings and a magnitude of information seems

overwhelming. Instead of keeping a logic separation

of the different element types visually using icons,

TMT’s approach is a focus on text description – again

making it harder to get an overview over the current

process. Lastly, it can be challenging to create very

complex systems, because TMT does not allow the

linking of multiple diagrams in one project file.

OWASP Threat Dragon.

As described in its documentation (OWASP, 2018),

Threat Dragon is an open-source threat modeling tool

developed by OWASP and currently in the early

stages of development. It is freely available in the

form of a web application and as a standalone desktop

app for both Windows and MacOS. Its main features

include (OWASP, 2018):

1. Creating DFDs manually.

2. Setting properties of DFD elements.

3. Adding custom STRIDE threats.

4. Manually prioritizing threats.

5. Linking threat models to GitHub Repositories.

Being open source and platform independent, Threat

Dragon is a tool that could potentially be integrated

in most development lifecycles without much effort,

however we are not aware of any such efforts. Its

design and implementation aids in giving a clear

overview over architectures of varying complexity.

Threat Dragon’s focus on community driven

development constitutes a few major drawbacks

when it comes to feature availability. Compared to

Microsoft’s TMT, Threat Dragon currently offers

neither automatic threat analysis, exporting of threat

data, nor the automatic generation of threat reports.

DFD element properties are currently very limited

and no custom properties can be set. With Threat

Dragon’s last commit to its master branch being

January 20, 2018 (Goodwin, 2018), its ambitious

goals defined in the roadmap still seem far away from

completion (OWASP, 2018). In its current state,

Threat Dragon is still missing several key features for

it to be considered a valid tool for threat modeling.

3 OPEN WEAKNESS AND

VULNERABILITY MODELER

We have developed a new open-source framework

and tool called “OVVL - Open Weakness and

Vulnerability Modeler” to facilitate the integration of

threat modeling into the development lifecycle for

software teams of any size. Its core functionality is

derived from the prior analysis of the current state and

existing solutions.

3.1 Core Data Model

The conceptual data model, as depicted in Figure 2,

represents the structural implementation concept of

OVVL. This model was derived through the analysis

of existing threat modeling tools and is based on our

requirements. As such, the conceptual data model

provides an overview over the tool’s core

functionality and also serves as an implementation

guideline.

SECRYPT 2019 - 16th International Conference on Security and Cryptography

420

Figure 1: OVVL Conceptual Data Model.

DFD Element to Threat Model Relation.
A DFD element can be either an interactor, process,

data store or a data flow. A data flow represents the

communication flow between elements. It is used to

link elements together, so that not only the elements

themselves, but also their interaction can be analyzed.

These connected elements form a representation of

the software- and communication architecture and

thus the model for which a threat analysis can be

made. To differentiate elements of the same type

during the threat analysis, each element defines

multiple selectable sub-types, e.g. “Browser Client”-

and “Web Server”-Process. They can be

distinguished further by setting different properties,

like “Isolation Level” and “Accepts User Input”. A

clear distinction between elements not only of a

different, but of the same type, is crucial for a

meaningful threat analysis and thus a useful threat

model.

CPE to Element Relation.
In order to ensure a thorough threat analysis, it is

necessary to allow for the mapping of certain

software makes to the elements in the model. By

searching for a certain software, e.g. “Firefox 62.0.2”,

the user is provided with a list of matching CPE’s,

which she can then link to the element the search was

requested from. By using CPE as an identifier, we

make it possible to specify which software an element

in the model is based on in a standardized manner.

The resulting, more accurate element specification

makes it possible to link known software

vulnerabilities to the model during the analysis

process. This is a feature which clearly distinguishes

our approach from the analyzed threat modelling

solutions.

Figure 2: Basic view of a system in OVVL.

CVE and Threats.

In order to facilitate an extensive analysis, our tool

differentiates between threats and vulnerabilities. A

threat is a possible risk of someone compromising

and/or harming a system, while a vulnerability can be

exploited and thus may give rise to a threat (Schaad

and Borozdin, 2012). OVVL distinguishes between

CVE-based, STRIDE-based and Custom-Threats, all

of which are linked to their respective elements. For

CVE-References being linked to the elements, a CPE

must first be set by the user.

Mitigation and Issues.
For our tool to be helpful not only for giving a threat-

overview over a system, but also during the

development process, it is necessary for a user to be

able to track and mitigate threats. This use case is

covered by the ability to prioritize found threats and

setting their mitigation status depending on whether

the threat has been resolved or not. While it is not

possible for our tool to analyze the development

status of a system, we want to make it possible to link

the mitigation status of threats to project tracking

software like Jira (Atlassian, 2018) or FogBugz

(FogBugz, 2018).

3.2 Threat Analysis

During the analysis process, our system iterates over

the data flows and thus over each element connection.

Properties of the elements are considered, and

matching threats are collected and returned to the

user. Generally, the threat definitions can be split into

threats always applicable to elements of a certain type

and threats only applicable to elements with certain

properties.

Currently, our threat definitions are the same as in

Microsoft’s TMT and are based on a modified

“Open Weakness and Vulnerability Modeler” (OVVL): An Updated Approach to Threat Modeling

421

Figure 3: Adding details to a model element.

STRIDE methodology. Our implementation structure

allows for the creation of new definitions, as well as

the integration of custom threat definitions set by a

user in the future without much effort. The

vulnerability analysis works in a similar manner;

CPEs are iterated over and compared to the available

CVE-References. Because the size of our CVE

dataset and the resulting lookup duration, found

threats and vulnerabilities are returned to the user

separately.

3.3 Data Protection

When performing threat analysis with OVVL, we can

use the tool to also make an architect aware of

requirements on a system such as stipulated in the

GDPR (GDPR, 2018). Here OVVL offers to label

data flows as containing personal data as well as mark

backend systems that store or process personal data.

OVVL is not designed to perform a full privacy

impact analysis, however data already gathered in

OVVL could be used further in the tool chain.

3.4 Related Modelling

As we initially indicated, our framework and tool also

support additional security modelling techniques that

could be applied in the early stages of the

development process. One such technique is that of

attack trees which are hierarchical, graphical

diagrams that show how low-level hostile activities

interact and combine to achieve an adversary's

objectives - usually with negative consequences for

the victim of the attack. Another technique is that of

misuse case diagrams (Figure 5), which can be

thought of as inside-out use cases. They aim at

capturing features that should not be implemented in

a system and offer another viewpoint of the system to

manage security requirements.

Figure 4: View of a spoofing threat found in OVVL.

The OVVL framework and its conceptual model

provide the possibility to create such attack trees and

misuse cases on basis of the already defined model

elements as part of the core threat modelling

functionality.

3.5 OVVL in the Development Tool
Chain

OVVL is flexible enough to forward data gathered as

part of the threat modelling process to other tools in

the software lifecycle toolchain.

One example is that of creating threat modeling

related tickets in bug tracking tools such as Jira

(Atlassian, 2018) or OpenProject (OpenProject,

2018), which is simple to realize by using the APIs

provided by Jira. A developer can then clear all the

identified threats as part of his development and

configuration work.

Though still part of our currently ongoing work,

we also plan on offering the integration with tools

such as Nessus (Tenable, 2019) for automated

vulnerability scanning. Here, we are very confident

that we can achieve a high degree of automation. One

use case is Nessus automatically loading threat

reports generated by OVVL and perform its scans of

the staged or operational system on basis of the

provided data.

3.6 Technology Stack

Three factors were kept in mind while choosing the

technology stack of OVVL: Scalability, support

availability, and complexity. As such, we chose

Angular as our frontend framework, because its

component-based approach allows for a high level of

scalability.

In the backend, where most of our data processing

is handled, we utilize Spring Boot. Spring boot

decreases the configuration time and boilerplate code

SECRYPT 2019 - 16th International Conference on Security and Cryptography

422

Figure 5: Misuse Case example in OVVL.

immensely, by auto-configuring the core application
and its dependencies.

The endpoints provided by our backend are

documented and generated by Swagger. Our data is

stored in a MongoDB, which allows for easy handling

of big datasets, such as the CVE and CPE data.

As hosting architectural data as part of a cloud

service may be considered as too security sensitive

for certain application domains or projects, we offer

to locally host an OVVL instance in form of a virtual

machine.

Our code and documentation is available at

https://github.com/open-weakness-and-vulnerability-

modeler and the OVVL website is https://ovvl.org.

4 EVALUATION

To evaluate the functionality of OVVL, we conducted

several case studies. We used the case study already

supplied by Microsoft for their TMT tool, as well as

two further case studies on typical (cloud-based) 3-

tier E-Commerce systems as part of our faculty’s

secure software engineering teaching activities.

In its current state, OVVL already facilitates the

DFD creation and analysis of software systems of any

complexity. This aspect is enhanced by the possibility

of defining elements further through the tool’s

functionality to set specific properties. Additionally,

selecting the software make of DFD elements and

analyzing them for their respective vulnerabilities,

provides a great insight over potential weaknesses a

system faces – at any point during development.

When compared to Microsoft’s TMT, OVVL reports

the same number of threats regardless of the specified

system. We also observed, that the creation of DFD’s

is significantly faster in OVVL than in Microsoft’s

solution. When it comes to looking up software

makes and their corresponding vulnerabilities, our

tool offers a significant decrease of loading times

compared to the official search engine provided by

the NVD itself. Here, OVVL resolves CPE queries

about 83% faster and CVE queries about 71% faster.

While in its current form OVVL can be used to

gain a general overview over a software system’s

security properties, it is still limited in some areas.

During the utilization of OVVL in the case studies it

became clear, that, while already a useful feature,

defining complex systems by zooming in and out of

the DFD must be improved further by allowing for

the specification of sub-components. This would

allow for a more accurate system representation, thus

improving a threat model further. Additionally, we

noted that the threat data currently available needs to

be fine-tuned. In its current form, the analysis

sometimes applies threats to their respective DFD

segments which are very far-fetched, or too broad in

their definition. In addition to further fine-tuning of

our threat definitions, realizing the requirement of

custom threat definition will mitigate this issue.

When it comes to its purpose of accompanying

actual software projects, some crucial requirements

are still missing. In order to fully integrate OVVL into

the development lifecycle, storing threat models both

locally and online, as well as allowing the

collaboration of multiple users, must be possible.

Additionally, the requirement of tracing model

iterations, mitigation status and found issues must be

met.

5 CONCLUSIONS

Immediate future work will focus on user studies, first

focusing on the feedback of our BA and MSc

Enterprise Security Students.

As we already observed in (Schaad and Borozdin,

2012), a core problem is that of a too high false

positive rate when blindly implementing the STRIDE

matrix on a DFD. However, we assume that simple

machine learning techniques could help to mitigate

this. The training data required for this can be equally

extracted from our user studies.

By utilizing threat modeling during the design

phase of a system, as well as during its development

lifecycle, IT security flaws can be mitigated before

they arise in a production system. As a result, the

demand for tools offering threat modeling support is

ramping up, but not addressed adequately by existing

solutions. Especially factors such as a limited

functionality, platform dependence, or a dated design

can make it challenging to justify integrating existing

tools into the development process.

“Open Weakness and Vulnerability Modeler” (OVVL): An Updated Approach to Threat Modeling

423

By analyzing the existing tools in detail, several

requirements for a new tool could be derived.

Offering OVVL as a web application, which

combines an extensive threat analysis with an

additional vulnerability analysis and an intuitive

design, we showcased how the lacking areas of the

threat modeling state can be filled. We hope OVVL

will be enhanced further through community

involvement, by making it open source. We think that

this open source approach, coupled with the wide

array of features OVVL will be offering, will make

this tool a meaningful contender in the world of threat

modeling. With the increasing importance of

developing secure software systems, integrating the

approach of “Security by Design” as a core concept

into the development lifecycle will greatly benefit

software projects of any size. By being simple in its

structure, yet powerful in its functionality, OVVL

will support this approach. As such, we are hopeful

that OVVL will improve the current state of threat

modeling.

REFERENCES

Atlassian, Jira Software. [online] Available at:

https://www.atlassian.com/software/jira [Accessed 29

Dec. 2018].

Brown-White, J. et al., 2017. Tactical Threat Modeling.

[online] Available at: https://www.safecode.org/wp-

content/uploads/2017/05/SAFECode_TM_Whitepaper

.pdf [Accessed 11 Dec. 2018].

FIRST.org Inc. Common Vulnerability Scoring System SIG.

[online] Available at: https://www.first.org/cvss/

[Accessed 29 Nov. 2018].

FogBugz. [online] Available at: https://www.fogbugz.com/

[Accessed 29 Dec. 2018].

GDPR, 2018 [online] Available at: https://ec.europa.eu/

commission/priorities/justice-and-fundamental-

rights/data-protection/2018-reform-eu-data-protection-

rules_en [Accessed 18 Mar. 2019].

Goodwin, M. Owasp-threat-dragon-desktop Master

Branch. [online] Available at: https://github.com/mike-

goodwin/owasp-threat-dragon-

desktop/commits/master [Accessed 06 Dec. 2018].

Hoglund, G., McGraw, G., 2004. Exploition Software: How

to break code, Addison Wesley.

Kohnfelder, L., Garg, P., n.d. The threats to our products,

Microsoft Foundation.

Ma, Z., Schmittner, C., 2016. Threat Modeling for

Automotive Security Analysis. In Advanced Science

and Technology Letters Vol. 139, pp. 333–339.

Microsoft Threat Modeling Tool 2016: Getting Started

Guide, n.d. Microsoft Corporation.

MITRE Corporation, n.d. CVE - Common Vulnerabilities

and Exposure. [online] Available at:

https://cve.mitre.org/ [Accessed 28 Nov. 2018].

Myagmar S., Adam J. Lee A., Yurcik W., 2005. Threat

Modeling as a Basis for Security Requirements. In

IEEE Symposium on Requirements Engineering for

Information Security.

National Vulnerability Database, 2018a. [online] Available

at: https://nvd.nist.gov/ [Accessed 29 Nov. 2018].

National Vulnerability Database, 2018b. CPE Summary.

[online] Available at:

https://nvd.nist.gov/products/cpe/detail/334460?keywo

rd=windows+7+64+bit&status=FINAL&orderBy=CP

EURI&namingFormat=2.3 [Accessed 29 Nov. 2018].

National Vulnerability Database, 2018c. CVE-2018-8505

Detail. [online] Available at:

https://nvd.nist.gov/vuln/detail/CVE-2018-8505

[Accessed 14 Nov. 2018].

National Vulnerability Database, 2018d. Official Common

Platform Enumeration (CPE) Dictionary. [online]

Available at: https://nvd.nist.gov/products/cpe

[Accessed 14 Nov. 2018].

OpenProject, 2018 Available at: https://www.

openproject.org/de/ [Accessed: 17.03.2019]

OWASP. OWASP Threat Dragon: Roadmap. [online]

Available at:

https://www.owasp.org/index.php/OWASP_Threat_Dr

agon#Roadmap [Accessed 06 Dec. 2018].

OWASP. Threat Dragon. [online] Available at:

http://docs.threatdragon.org/ [Accessed 06 Dec. 2018].

Pandit, D. Threat Modeling: The Why, How, When and

Which Tools. [online] Available at:

https://devops.com/threat-modeling-the-why-how-

when-and-which-tools/ [Accessed 27 Nov. 2018].

Schaad, A., Borozdin, M., 2012. “TAM2: Automated

Threat Analysis”. In SAC '12 Proceedings of the 27th

Annual ACM Symposium on Applied Computing, pp.

1103–1108.

Secodis GmbH. Threat Modeling [online] Available at:

https://www.secodis.com/bedrohungsanalysen/

[Accessed 27 Nov. 2018].

Shostack, A., 2008. Experiences Threat Modeling at

Microsoft. [online] Available at:

https://adam.shostack.org/modsec08/Shostack-

ModSec08-Experiences-Threat-Modeling-At-

Microsoft.pdf [Accessed 29 Jan. 2019].

Stack Overflow, 2018. Developer Survey Results 2018:

Platforms. [online] Available at:

https://insights.stackoverflow.com/survey/2018/#techn

ology-platforms [Accessed 05 Dec. 2018].

Stavroulakis, P., Stamp, M., 2010. Handbook of

Information and Communication Security, Springer.

Tenable, 2019. Nessus. [online] Available at:

https://www.tenable.com/products/nessus/nessus-

professional [Accessed 17 March, 2019].

SECRYPT 2019 - 16th International Conference on Security and Cryptography

424

