being absent the logarithm in Hellinger-Tsallis
divergence.
7 CONCLUSIONS
This paper treats the problem of statistical
linearization for nonlinear multidimensional
dynamical stochastic systems described by input-
output representation with an input process of a
Gaussian white noise type as a construction of
equivalent linear input-output model as per the
information-theoretic criterion based on Hellinger-
Tsallis mutual information (6). The latter resulted in
equations enabling the determination of the linearized
model weight matrix elements, which define them as
a function of Hellinger-Tsallis mutual information,
while vanishing of mutual information is equivalent to
vanishing of the respective weight matrix elements.
Meanwhile, this is equivalent to independence of the
respective components of the input and output
processes of the initial system under study, which, in
turn, is indicative of the identifiability of such a
system.
REFERENCES
Chernyshov, K. R., 2018. “The Anisotropic Norm of
Signals: Towards Possible Definitions”, IFAC-
PapersOnLine , vol. 51, no. 32, pp. 169-174.
Hellinger, E. D., 1907. “Die Orthogonalinvarianten
quadratischer Formen von unendlich vielen Variablen”,
Thesis of the university of Göttingen, 84 p.
Kotz, S., Balakrishnan, N., and N. L. Johnson, 2000.
Continuous Multivariate Distributions. Volume 1.
Models and Applications / Second Edition, Wiley, New
York, 752 p.
Mokkadem, A., 1989. “Estimation of the entropy and
information of absolutely continuous random
variables”, IEEE Transactions on Information Theory,
vol. IT-35, pp. 193-196.
Nelsen, R. G., 2006. An Introduction to Copulas / Second
Edition, Springer Science+Business Media, New York,
2006, 274 p.
Rajbman, N. S., 1981. “Extensions to nonlinear and
minimax approaches”, Trends and Progress in System
Identification, ed. P. Eykhoff, Pergamon Press, Oxford,
pp. 185-237.
Rényi, A. 1959. “On measures of dependence”, Acta Math.
Hung., vol. 10, no. 3-4, pp. 441-451.
Sarmanov, O. V., 1963a. “The maximum correlation
coefficient (nonsymmetric case)”, Sel. Trans. Math.
Statist. Probability, vol. 4, pp. 207-210.
Sarmanov, O. V., 1963b. “Maximum correlation coefficient
(symmetric case)”, Select. Transl. Math. Stat. Probab.
vol. 4, pp. 271-275.
Sarmanov, O. V., 1967. “Remarks on uncorrelated
Gaussian dependent random variables”, Theory
Probab. Appl., vol. 12, no. 1, pp. 124-126.
Sklar, A., 1959. “Fonctions de répartiticion à n dimensions
et leurs marges”, Publ. Inst. Statist. Univ. Paris 8, pp.
229-231.
Tsallis, C., 2009. Introduction to Nonextensive Statistical
Mechanics. Approaching a Complex World, Springer
Science+Business Media, New York, 388 p.
Vladimirov, I. G., Diamond, P., and P. Kloeden, 2006.
“Anisotropy-based robust performance analysis of
finite horizon linear discrete time varying systems”,
Automation and Remote Control, vol. 67, no. 8, pp.
1265-1282.
Vladimirov, I. G., Kurdjukov, A. P., and A. V. Semyonov,
1995. “Anisotropy of Signals and the Entropy of Linear
Stationary Systems”, Doklady Math., vol. 51, pp. 388-
390.
Vladimirov, I. G., Kurdjukov, A. P., and A. V. Semyonov,
1999. “Asymptotics of the anisotropic norm of linear
discrete-time-invariant systems”, Automation and
Remote Control, vol. 60, no. 3, pp. 359-366.
Zeng, X. and T. S. Durrani, 2011. “Estimation of mutual
information using copula density function”, Electronics
Letters, vol. 47, no. 8, pp. 493-494.