other values of parameter ξ. Our results have indi-
cated that the channel defined inside the NF domain
is a complicated nonlinear channel with the mem-
ory depending on the propagation distance, power,
and on the presence of eigenvalues. Our findings can
be used further to optimise the performance of NFT-
based transmission systems with modulation of con-
tinuous and discrete spectra.
ACKNOWLEDGEMENTS
MLP: This project was supported by the Horizon
2020 programme under the MSCA-IF-EF-ST No
751561. JEP acknowledges the support of Lev-
erhulme Project RPG-2018-063. JEP is thank-
ful to Erasmus+ mobility programme. The au-
thors acknowledge helpful comments of Dr S. A.
Derevyanko.
REFERENCES
Agrawal, G. P. (2012). Fiber-optic communication systems,
volume 222. John Wiley & Sons.
Aref, V. (2016). Control and detection of discrete spectral
amplitudes in nonlinear fourier transform. Arxiv.org.
Aref, V., Le, S., and Buelow, H. (2018). Modulation over
nonlinear fourier spectrum: Continuous and discrete
spectrum. Journal Lightwave Technologies, 36:1289.
Civelli, S., Forestieri, E., and Secondini, M. (2017). Why
noise and dispersion may seriously hamper nonlin-
ear frequency-division multiplexing. IEEE Photonics
Technology Letters, 29(16):1332–1335.
Derevyanko, S. A., Prilepsky, J. E., and Turitsyn, S. K.
(2016). Capacity estimates for optical transmission
based on the nonlinear fourier transform. Nature Com-
mun, 7(12710):307.
Derevyanko, S. A., Turitsyn, S., and Yakushev, D. (2003).
Non-gaussian statistics of an optical soliton in the
presence of amplified spontaneous emission. Optics
letters, 28(21):2097–2099.
Essiambre, R.-J., Kramer, G., Winzer, P. J., Foschini, G. J.,
and Goebel, B. (2010). Capacity limits of optical
fiber networks. Journal of Lightwave Technology,
28(4):662–701.
Garcia-Gomez, F. J. and Aref, V. (2019). Statistics of the
nonlinear discrete spectrum of a noisy pulse. arXiv
preprint arXiv:1901.11419.
Kamalian, M., Prilepsky, J. E., Le, S. T., and Turitsyn, S. K.
(2017). On the design of nft-based communication
systems with lumped amplification. Journal of Light-
wave Technology, 35(24):5464–5472.
Kaup, D. (1976). A perturbation expansion for the
zakharov–shabat inverse scattering transform. SIAM
Journal on Applied Mathematics, 31(1):121–133.
Kaup, D. J. and Newell, A. C. (1978). Solitons as particles,
oscillators, and in slowly changing media: a singular
perturbation theory. Proceedings of the Royal Society
of London. A. Mathematical and Physical Sciences,
361(1707):413–446.
Kazakopoulos, P. and Moustakas, A. L. (2016). On the soli-
ton spectral efficiency in non-linear optical fibers. In
2016 IEEE International Symposium on Information
Theory (ISIT), pages 610–614. IEEE.
Le, S., Aref, V., and Buelow, H. (2017). Nonlinear signal
multiplexing for communication beyond the kerr non-
linearity limit. Nature Photonics, 11:570.
Le, S. T., Prilepsky, J. E., and Turitsyn, S. K. (2014).
Nonlinear inverse synthesis for high spectral effi-
ciency transmission in optical fibers. Optics Express,
22:26270.
Le, S. T., Prilepsky, J. E., and Turitsyn, S. K. (2015).
Nonlinear inverse synthesis technique for optical
links with lumped amplification. Optics express,
23(7):8317–8328.
Pankratova, M., Vasylchenkova, A., Prilepsky, J. E., and
Derevyanko, S. A. (2018). Properties of the effective
noise in the nonlinear fourier transform-based trans-
mission. In Frontiers in Optics, pages JW3A–83. Op-
tical Society of America.
Pankratova, M. L., Vasylchenkova, A., Prilepsky, J., and
Derevyanko, S. A. (2018). Study of noise-induced
signal corruption for nonlinear fourier-based optical
transmission. In 2018 IEEE British and Irish Confer-
ence on Optics and Photonics (BICOP), pages 1–3.
Shevchenko, N. A., Derevyanko, S. A., Prilepsky, J. E.,
Alvarado, A., Bayvel, P., and Turitsyn, S. K. (2018).
Capacity lower bounds of the noncentral chi-channel
with applications to soliton amplitude modulation.
IEEE Transactions on Communications, 66(7):2978–
2993.
Shevchenko, N. A., Prilepsky, J. E., Derevyanko, S. A., Al-
varado, A., Bayvel, P., and Turitsyn, S. K. (2015). A
lower bound on the per soliton capacity of the nonlin-
ear optical fibre channel. In 2015 IEEE Information
Theory Workshop-Fall (ITW), pages 104–108. IEEE.
Tavakkolnia, I., Alvarado, A., and Safari, M. (2018). Ca-
pacity estimates of single soliton communication. In
2018 European Conference on Optical Communica-
tion (ECOC), pages 1–3. IEEE.
Tavakkolnia, I. and Safari, M. (2017). Capacity analysis
of signaling on the continuous spectrum of nonlin-
ear optical fibers. Journal of Lightwave Technology,
35(11):2086–2097.
Turitsyn, S. K., Prilepsky, J. E., Le, S. T., Wahls, S., Frumin,
L. L., Kamalian, M., and Derevyanko, S. A. (2017).
Nonlinear fourier transform for optical data process-
ing and transmission: advances and perspectives. Op-
tica, 4:307.
Vasylchenkova, A., Prilepsky, J., Shepelsky, D., and Chat-
topadhyay, A. (2019). Direct nonlinear fourier trans-
form algorithms for the computation of solitonic spec-
tra in focusing nonlinear schr
¨
odinger equation. Com-
munications in Nonlinear Science and Numerical Sim-
ulation, 68:347–371.
Noise-induced Signal Corruption in Nonlinear Fourier-based Optical Transmission System in the Presence of Discrete Eigenvalues
263