REFERENCES
Aghannan, N., Rouchon, P., 2003. An intrinsic observer for
a class of Lagrangian systems. IEEE Transactions on
Automatic Control. 48, 936-945.
Andoga, R., Főző, L., Judičák, J., Bréda, R., Szabo, S.,
Rozenberg, R., Džunda, M., 2018. Intelligent situational
control of small turbojet engines. International Journal
of Aerospace Engineering. 2018, paper 8328792, 1-16.
Åström, K. J., Murray, R. M., 2009. Feedback Systems. An
introduction for scientists and engineers. Princeton,
New Jersey, Princeton University Press.
Bishop, R. H., 2007. The Mechatronics Handbook, 2
nd
ed.
Boca Raton, FL: CRC Press.
Blažič, S., 2014. On periodic control laws for mobile robots.
IEEE Transactions on Industrial Electronics. 61 (7),
3660-3670.
Braga, D., Madureira, A. M., Coelho, L., Ajith, R., 2019.
Automatic detection of Parkinson's disease based on
acoustic analysis of speech. Engineering Applications of
Artificial Intelligence. 77, 148-158.
Brown, R. G., Hwang, P. Y. C., 1996. Introduction to
Random Signals and Applied Kalman Filtering, 3
rd
ed.
New York: John Wiley & Sons.
Direito, B., Teixeira, C. A., Sales, F., Castelo-Branco, M.,
Dourado, A., 2017. A realistic seizure prediction study
based on multiclass SVM. International Journal of
Neural Systems. 27 (3), 1-15.
ECP, 2010. Industrial Emulator/Servo Trainer Model 220
System, Testbed for Practical Control Training. Bell
Canyon, CA: Educational Control Products.
Ferreira, R., Graça Ruano, M., Ruano, A. E., 2017.
Intelligent non-invasive modeling of ultrasound-
induced temperature in tissue phantoms. Biomedical
Signal Processing and Control. 33, 141-150.
Gutiérrez-Carvajal, R. E., de Melo, L. F., Rosário, J. M.,
Tenreiro Machado, J. A., 2016. Condition-based
diagnosis of mechatronic systems using a fractional
calculus approach. International Journal of Systems
Science. 47, 2169-2177.
Isermann, R., 2005. Mechatronic Systems: Fundamentals.
Berlin, Heidelberg, New York: Springer-Verlag.
Kovács, B., Szayer, G., Tajti, F., Burdelis, M., Korondi, P.,
2016. A novel potential field method for path planning of
mobile robots by adapting animal motion attributes.
Robotics and Autonomous Systems. 82, 24-34.
Lendek, Z., Babuska, R., De Schutter, B., 2008. Distributed
Kalman filtering for cascaded systems. Engineering
Applications of Artificial Intelligence. 21, 457-469.
Luenberger, D. G., 1966. Observers for multivariable
systems. IEEE Transactions on Automatic Control. 11,
190-197.
Magnis, L., Petit, N., 2016. Angular velocity nonlinear
observer from single vector measurements. IEEE
Transanctions on Automatic Control. 61, 2473-2483.
Marx, B., Koenig, D., Ragot, J., 2007. Design of observers
for Takagi-Sugeno descriptor systems with unknown
inputs and application to fault diagnosis. IET Control
Theory & Applications. 1, 1487-1495.
Precup, R.-E., Teban, T.-A., Albu, A., Szedlak-Stinean, A.-
I., Bojan-Dragos, C.-A., 2018. Experiments in
incremental online identification of fuzzy models of
finger dynamics. Romanian Journal of Information
Science and Technology. 21 (4), 358-376.
Spurgeon, S. K., 2008. Sliding mode observers: A survey.
International Journal of Systems Science. 39, 751-764.
Szedlak-Stinean, A.-I., Precup, R.-E. Preitl, S., Petriu, E.
M., Bojan-Dragos, C.-A., 2016. State feedback control
solutions for a mechatronics system with variable
moment of inertia. In Proc. 13
th
International
Conference on Informatics in Control, Automation and
Robotics, Lisbon, Portugal, 458-465.
Szedlak-Stinean, A.-I., Precup, R.-E., Petriu, E. M., 2017.
Fuzzy and 2-DOF controllers for processes with a
discontinuously variable parameter. In Proc. 14
th
International Conference on Informatics in Control,
Automation and Robotics, Madrid, Spain, 431-438.
Thau, F. E., 1973. Observing the state of nonlinear dynamic
systems. International Journal of Control. 17, 471-479.