2011 Fourth IEEE International Conference on Soft-
ware Testing, Verification and Validation(ICST), vol-
ume 00, pages 427–430.
Chen, P. and Chen, H. (2018). Angora: Efficient fuzzing by
principled search. CoRR, abs/1803.01307.
Coppit, D. and Lian, J. (2005). Yagg: An easy-to-use gen-
erator for structured test inputs. In Proceedings of
the 20th IEEE/ACM International Conference on Au-
tomated Software Engineering, ASE ’05, pages 356–
359, New York, NY, USA. ACM.
Cui, W., Peinado, M., Chen, K., Wang, H. J., and Irun-Briz,
L. (2008). Tupni: Automatic reverse engineering of
input formats. In Proceedings of the 15th ACM Con-
ference on Computer and Communications Security,
CCS ’08, pages 391–402, New York, NY, USA. ACM.
DevonGovet, h. Regular expression generator.
Dolan-Gavitt, B., Hulin, P., Kirda, E., Leek, T., Mam-
bretti, A., Robertson, W. K., Ulrich, F., and Whelan,
R. (2016). LAVA: large-scale automated vulnerability
addition. In IEEE Symposium on Security and Pri-
vacy, pages 110–121. IEEE Computer Society.
Godefroid, P. (2007). Random testing for security: black-
box vs. whitebox fuzzing. In RT ’07.
Godefroid, P., Kiezun, A., and Levin, M. Y. (2008a).
Grammar-based whitebox fuzzing. In Proceedings
of the 29th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI
’08, pages 206–215, New York, NY, USA. ACM.
Godefroid, P., Kiezun, A., and Levin, M. Y. (2008b).
Grammar-based whitebox fuzzing. SIGPLAN Not.,
43(6):206–215.
Godefroid, P., Levin, M. Y., and Molnar, D. (2012).
Sage: Whitebox fuzzing for security testing. Queue,
10(1):20:20–20:27.
Godefroid, P., Peleg, H., and Singh, R. (2017). Learn&fuzz:
machine learning for input fuzzing. In Rosu, G.,
Penta, M. D., and Nguyen, T. N., editors, Proceedings
of the 32nd IEEE/ACM International Conference on
Automated Software Engineering, ASE 2017, Urbana,
IL, USA, October 30 - November 03, 2017, pages 50–
59. IEEE Computer Society.
Hanford, K. V. (1970). Automatic generation of test cases.
IBM Syst. J., 9(4):242–257.
H
¨
oschele, M. and Zeller, A. (2016). Mining input gram-
mars from dynamic taints. In Proceedings of the
31st IEEE/ACM International Conference on Auto-
mated Software Engineering, ASE 2016, pages 720–
725, New York, NY, USA. ACM.
L
¨
ammel, R. and Schulte, W. (2006). Controllable combi-
natorial coverage in grammar-based testing. In Uyar,
M.
¨
U., Duale, A. Y., and Fecko, M. A., editors, Test-
ing of Communicating Systems, pages 19–38, Berlin,
Heidelberg. Springer Berlin Heidelberg.
Majumdar, R. and Xu, R.-G. (2007). Directed test genera-
tion using symbolic grammars. In Proceedings of the
Twenty-second IEEE/ACM International Conference
on Automated Software Engineering, ASE ’07, pages
134–143, New York, NY, USA. ACM.
Mathis, B. (2017). Dynamic tainting for automatic test
case generation. In Proceedings of the 26th ACM
SIGSOFT International Symposium on Software Test-
ing and Analysis, ISSTA 2017, pages 436–439, New
York, NY, USA. ACM.
Newsome, J. (2005). Dynamic taint analysis for automatic
detection, analysis, and signature generation of ex-
ploits on commodity software.
Paduraru, C., Melemciuc, M., and Stefanescu, A. (2017).
A distributed implementation using apache spark of
a genetic algorithm applied to test data generation.
In Bosman, P. A. N., editor, Genetic and Evolution-
ary Computation Conference, Berlin, Germany, July
15-19, 2017, Companion Material Proceedings, pages
1857–1863. ACM.
Purdom, P. (1972). A sentence generator for testing parsers.
BIT Numerical Mathematics, 12(3):366–375.
Rajpal, M., Blum, W., and Singh, R. (2017). Not all
bytes are equal: Neural byte sieve for fuzzing. CoRR,
abs/1711.04596.
Sirer, E. G. and Bershad, B. N. (1999). Using produc-
tion grammars in software testing. SIGPLAN Not.,
35(1):1–13.
Stoenescu, T., Stefanescu, A., Predut, S.-N., and Ipate, F.
(2016). River: A binary analysis framework using
symbolic execution and reversible x86 instructions.
Sutton, M., Greene, A., and Amini, P. (2007). Fuzzing:
Brute Force Vulnerability Discovery. Addison-Wesley
Professional.
Utting, M., Pretschner, A., and Legeard, B. (2012). A
taxonomy of model-based testing approaches. Softw.
Test. Verif. Reliab., 22(5):297–312.
Yadegari, B. and Debray, S. (2014). Bit-level taint analy-
sis. In Proceedings of the 2014 IEEE 14th Interna-
tional Working Conference on Source Code Analysis
and Manipulation, SCAM ’14, pages 255–264, Wash-
ington, DC, USA. IEEE Computer Society.
Fuzz Testing with Dynamic Taint Analysis based Tools for Faster Code Coverage
93