This work has been supported by the Austrian Federal
Ministry for Digital and Economic Affairs, the Na-
tional Foundation for Research, Technology and De-
velopment. We thank Walter Obenaus (Siemens Rail
Automation) for supplying us with test data.
REFERENCES
Bischl, B., Lang, M., Kotthoff, L., Schiffner, J., Richter, J.,
Studerus, E., Casalicchio, G., and Jones, Z. M. (2016).
mlr: Machine learning in r. The Journal of Machine
Learning Research, 17(1):5938–5942.
Breiman, L. (2001). Random forests. Machine learning,
45(1):5–32.
Genuer, R., Poggi, J.-M., and Tuleau-Malot, C. (2010).
Variable selection using random forests. Pattern
Recognition Letters, 31(14):2225–2236.
Ghaoui, L. E., Viallon, V., and Rabbani, T. (2010). Safe
feature elimination for the lasso and sparse supervised
learning problems. arXiv preprint arXiv:1009.4219.
Guyon, I. and Elisseeff, A. (2003). An introduction to vari-
able and feature selection. Journal of machine learn-
ing research, 3(Mar):1157–1182.
Hoffmann, I., Serneels, S., Filzmoser, P., and Croux, C.
(2015). Sparse partial robust M regression. Chemo-
metrics and Intelligent Laboratory Systems, 149:50–
59.
John, G. H., Kohavi, R., and Pfleger, K. (1994). Irrelevant
features and the subset selection problem. In Machine
Learning Proceedings 1994, pages 121–129. Elsevier.
Johnson, R. A., Wichern, D. W., et al. (2002). Applied mul-
tivariate statistical analysis, volume 5. Prentice hall
Upper Saddle River, NJ.
Kuhn, M. (2012). Variable selection using the caret pack-
age. URL http://cran. cermin. lipi. go. id/web/pack-
ages/caret/vignettes/caretSelection. pdf.
Radovic, M., Ghalwash, M., Filipovic, N., and Obradovic,
Z. (2017). Minimum redundancy maximum relevance
feature selection approach for temporal gene expres-
sion data. BMC bioinformatics, 18(1):9.
Runeson, P. and H
¨
ost, M. (2009). Guidelines for conduct-
ing and reporting case study research in software engi-
neering. Empirical software engineering, 14(2):131.
Saeys, Y., Abeel, T., and Van de Peer, Y. (2008). Robust fea-
ture selection using ensemble feature selection tech-
niques. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases,
pages 313–325. Springer.
Serneels, S., Croux, C., Filzmoser, P., and Van Espen, P. J.
(2005). Partial robust m-regression. Chemometrics
and Intelligent Laboratory Systems, 79(1-2):55–64.
Strobl, C., Boulesteix, A.-L., Kneib, T., Augustin, T., and
Zeileis, A. (2008). Conditional variable importance
for random forests. BMC bioinformatics, 9(1):307.
Tuv, E., Borisov, A., Runger, G., and Torkkola, K. (2009).
Feature selection with ensembles, artificial variables,
and redundancy elimination. Journal of Machine
Learning Research, 10(Jul):1341–1366.
Van Dijck, G. and Van Hulle, M. M. (2006). Speeding up
the wrapper feature subset selection in regression by
mutual information relevance and redundancy analy-
sis. In International Conference on Artificial Neural
Networks, pages 31–40. Springer.
Wilcox, R. R. and Keselman, H. (2003). Modern robust
data analysis methods: measures of central tendency.
Psychological methods, 8(3):254.
Wurl, A., Falkner, A., Haselb
¨
ock, A., and Mazak, A.
(2017). Advanced data integration with signifiers:
Case studies for rail automation. In International Con-
ference on Data Management Technologies and Appli-
cations, pages 87–110. Springer.
Wurl, A., Falkner, A. A., Filzmoser, P., Haselb
¨
ock, A.,
Mazak, A., and Sperl, S. (to be published in 2019).
A comprehensive prediction approach for hardware
asset management. In International Conference on
Data Management Technologies and Applications.
Springer.
Wurl, A., Falkner, A. A., Haselb
¨
ock, A., Mazak, A., and
Sperl, S. (2018). Combining prediction methods for
hardware asset management. In Proceedings of DATA
2018., pages 13–23.
Yu, L. and Liu, H. (2003). Feature selection for high-
dimensional data: A fast correlation-based filter solu-
tion. In Proceedings of the 20th international confer-
ence on machine learning (ICML-03), pages 856–863.
Yu, L. and Liu, H. (2004). Efficient feature selection via
analysis of relevance and redundancy. Journal of ma-
chine learning research, 5(Oct):1205–1224.
Exploring Robustness in a Combined Feature Selection Approach
91