accommodate input so that it can be used for more
applications (e.g., using sea level rise data as input to
assess the effect of sea level rise to the distribution of
mangrove species).
ACKNOWLEDGEMENTS
This study is an extension of the works done by the
GeoSiMAS project of IAMBlueCECAM program.
REFERENCES
Berger, U. and Hildenbrandt, H., 2000. A new approach to
spatially explicit modelling of forest dynamics:
spacing, ageing and neighbourhood competition of
mangrove trees. Ecol. Model, 132, pp. 287–302.
Bojo, O., 1995. Sonneratiaceae. In: Soepadmo, E. and
Wong, K.M. (Eds.), Tree Flora of Sabah and Sarawak.
Ampang Press Sdn. Bhd., Kuala Lumpur, pp. 443-451.
Bormann, F.H. and Likens, G.E., 1979. Pattern and process
in a forested ecosystem. Springer-Verlag, New York,
pp. 253.
Botkin, D.B., Janaj, J.F., Wallis, J.R., 1972. Some
ecological consequences of a computer model of forest
growth. J. Ecol, 60, pp. 849-872.
CABI, 2018, Nypa fruticans (nipa palm), viewed 21
January 2019, <https://www.cabi.org/isc/datasheet/
36772>.
Chen, R. and Twilley, R.R., 1998. A gap dynamic model of
mangrove forest development along gradients of soil
salinity and nutrient resources. J. Ecol, 86, pp. 37–51.
Dangremond, E., Feller, I., Sousa, W., 2015. Environmental
tolerances of rare and common mangroves along light
and salinity gradients. Oecologia, 179(4), pp. 1187–
1198.
Duke, N., Ball, M., Ellison, J., 1998. Factors Influencing
Biodiversity and Distributional Gradients in
Mangroves. Global Ecology and Biogeography, 7, pp.
27-47.
FAO Ecocrop, 2018, Plant Search Form, viewed 21 January
2019, <http://ecocrop.fao.org/ecocrop/srv/en/
cropFindForm>.
Garcia, K., Gevaña, D., Malabrigo, P., 2013. Philippines'
Mangrove Ecosystem: Status, Threats, and
Conservation. Mangrove Ecosystems of Asia: Status,
Challenges and Management Strategies, pp. 81-94.
Giesen, W., Wulffraat, S., Zieren, M., 2007. Mangrove
Guidebook for Southeast Asia. FAO Regional Office
for Asia and the Pacific.
Grueters, U., Seltmann, T., Schmidt, H., Horn, H.,
Pranchai, A., Vovides, A.G., Peters, R., Vogt, J.,
Dahdouh-Guebas, F., Berger, U., 2014. The mangrove
forest dynamics model mesoFON. Ecol. Model, 291,
pp. 28–41.
Jiang J., DeAngelis D., Smith III T., Teh S., Koh H-L.,
2012. Spatial pattern formation of coastal vegetation in
response to external gradients and positive feedbacks
affecting soil porewater salinity: a model study.
Landscape Ecology, 27(1), pp. 109–119.
Keeton, W., Whitman, A., Mcgee, G., Goodale, C., 2011.
Late-Successional Biomass Development in Northern
Hardwood-Conifer Forests of the Northeastern United
States. Forest Science, 57, pp. 489-505.
Komiyama A., Ong J.E., Poungparn S., 2008. Allometry,
biomass, and productivity of mangrove forests: A
review. Aquatic Botany, 89(1), pp. 128-137.
Ma, R-Y., Zhang, J-L., Cavaleri, M., Sterck, F., Strijk, J.,
Cao, K-F., 2015. Convergent Evolution towards High
Net Carbon Gain Efficiency Contributes to the Shade
Tolerance of Palms (Arecaceae). PLOS ONE, 10(10).
Madani, L. and Wong, K.M., 1995. Rhizophoraceae. In:
Soepadmo, E. and Wong, K.M. (Eds.), Tree Flora of
Sabah and Sarawak. Ampang Press Sdn. Bhd., Kuala
Lumpur, pp. 321-349.
Reef, R. and Lovelock, C., 2015. Regulation of water
balance in mangroves. Annals of Botany, 115, pp. 385-
395.
Smith, T., 1992. Forest structure. In: Robertson, A.I. and
Alongi, D.M. (Eds.), Tropical mangrove ecosystems.
American Geophysical Union, Washington, D.C., pp.
101-136.
World Agroforestry, n.d. Wood Density. viewed 21 January
2019, <http://db.worldagroforestry.org/wd>.
SIMULTECH 2019 - 9th International Conference on Simulation and Modeling Methodologies, Technologies and Applications
164