
A Software-defined Networking-based Detection and Mitigation
Approach against KRACK

Yi Li1, Marcos Serrano1, Tommy Chin2, Kaiqi Xiong1 and Jing Lin1

1Intelligent Computer Networking and Security Lab, University of South Florida, Tampa, U.S.A.
2Department of Computing Security, Rochester Institute of Technology, Rochester, U.S.A.

Keywords: KRACK, Software-defined Networking, WPA2, Network Security.

Abstract: Most modern Wi-Fi networks are secured by the Wi-Fi Protected Access II (WPA2) protocol that uses a 4-way
handshake. Serious weaknesses have been discovered in this 4-way handshake that allows attackers to perform
key reinstallation attacks (KRACKs) within the range of an Access Point (AP) to intercept personal informa-
tion. In this paper, we study KRACK and present a software-defined networking (SDN)-based detection and
mitigation framework to defend against KRACK. The proposed framework leverages the characteristic of an
SDN controller, a global view of a network, to monitor and manage a Wi-Fi network traffic. It consists of two
main components: detection and mitigation modules. Both of them are deployed on the SDN controller. The
detection module will monitor network traffic and detect the duplicated message 3 of the 4-way handshake.
Once KRACK has been detected, the mitigation module will update the flow table to redirect the attack traffic
to a splash portal, which is a place to store attack traffic. Extensive experimental results demonstrate that the
proposed framework can efficiently detect and mitigate KRACK. We achieve an average of 170.926 ms to
detect KRACK and an average of 10.041 ms to mitigate KRACK in our experiments.

1 INTRODUCTION

WPA2 is a widely used protocol developed by the
Wi-Fi Alliance to secure the majority of wireless
networks. A WPA2 encrypted network can defend
against intruders and identity thieves by providing
unique encryption keys when a client is trying to
connect to a network. However, researchers have
discovered some vulnerabilities of WPA2 (Kumkar
et al., 2012; Tsitroulis et al., 2014a). WPA2 uses
two keys, Pairwise Transient Key (PTK) and Group
Temporal Key (GTK), for encryption. A PTK is es-
tablished through the 4-way handshake defined in the
802.11i, and it is unique for each client. A GTK is
randomly generated by Access Point (AP), and it is
shared among all clients. Such APs can be imple-
mented as routers, modems, or gateways. Attackers
can manipulate the GTK to launch attacks since it is
used as an encryption key in the AP and a decryption
key for clients. Attackers can inject forged data traffic
through a GTK to all associated clients. Therefore, it
can possibly result in several types of attacks, such as
man-in-the-middle (MitM) attacks and denial of ser-
vice (DoS) attacks (Teyou and Zhang, 2018).

In October 2017, researchers discovered a seri-

ous flaw in the WPA2 protocol that allows attackers
within the range of an AP to perform KRACK (Van-
hoef and Piessens, 2017). To be precise, attackers can
intercept and steal a client’s information, such as pass-
words, emails, and credit card numbers, that should
be safely encrypted. In some scenarios, it is also pos-
sible for attackers to inject malicious contents or ma-
nipulate data on the website that a client is visiting.
Correct implementation of WPA2 is likely to be af-
fected since this weakness is in the Wi-Fi standard
itself. Furthermore, the researchers have investigated
devices that are still affected by KRACK and devel-
oped generalized attacks based on it (Vanhoef and
Piessens, 2018). Moreover, they have recently discov-
ered an easier way to attack unpatched devices and
bypass the Wi-Fi’s official countermeasure against
KRACK.

In order to alleviate this issue, a framework called
KrackCover was proposed to detect KRACK (Chin
and Xiong, 2018). It will send an alert to the client
once the attack has been detected. The experiment is
conducted in the public network such as coffee shops
and libraries. This approach can effectively warn
clients for potential threats of KRACK. However, it
did not provide any solution to mitigate the attack.

244
Li, Y., Serrano, M., Chin, T., Xiong, K. and Lin, J.
A Software-defined Networking-based Detection and Mitigation Approach against KRACK.
DOI: 10.5220/0007926202440251
In Proceedings of the 16th International Joint Conference on e-Business and Telecommunications (ICETE 2019), pages 244-251
ISBN: 978-989-758-378-0
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



After a careful investigation of KRACK, we pro-
pose a Software-Defined Networking based detection
and mitigation framework to defend against KRACK.
SDN is an emerging paradigm with the benefits of
network visibility and network device programmabil-
ity, and it is widely used in network security. With the
separation of the control plane and the infrastructure
plane, an SDN network is very easy to be managed
by a centralized SDN controller since it has a global
view of the whole network. Many researchers have
adopted SDN in network management and network
security (Scott-Hayward et al., 2013; Yan et al., 2016;
Xie et al., 2018).

The proposed framework consists of the two main
modules: detection and mitigation. Specifically, we
apply SDN to a Wi-Fi AP where Wi-Fi’s short-haul
communications are converted into long-haul com-
munications to the Internet using SDN. That is, the
conversion of communication data are processed by
an SDN switch under the management of an SDN
controller. In the detection module of the proposed
framework, the SDN controller inspects each incom-
ing Wi-Fi network request where the duplicated mes-
sage 3 of the 4-way handshake will be detected when
an attacker launches KRACK. We configure an AP to
be functioned as an OpenFlow vSwitch (OVS), which
is monitored and managed by the SDN controller. The
detection module is deployed on the SDN controller
since the controller has a global view of the network.
First, the SDN controller monitors all the traffic going
through the network. Then, if an attacker launches
KRACK to target a victim, the detection module can
detect this attack by checking duplicated message 3
of the 4-way handshake. Next, once the attack has
been detected, the mitigation module will update the
entries of flow table in the OVS to re-direct the traffic
flows to a splash portal, which is a place to store at-
tack traffic. The proposed framework can effectively
defend against KRACK with the SDN architecture.

The rest of the paper is organized as follows. Sec-
tion 2 presents related work about Wi-Fi security.
Section 3 gives the threat model. Section 4 introduces
the design of the proposed framework. Next, Sec-
tion 5 discusses the evaluation of the proposed frame-
work, such as detection time. Lastly, Section 6 con-
cludes our studies and presents future work.

2 RELATED WORK

Many studies have been done in the security of Wi-
Fi networks (Yang and Huang, 2018; Alblwi and
Shujaee, 2017; Noh et al., 2016). Tsitroulis et
al. (Tsitroulis et al., 2014b) studied the WPA2 se-

curity protocol and presented several vulnerabilities
of the WPA2 protocol. As the increasing number
of devices are connected to Wi-Fi networks, it be-
comes very important to secure those wireless net-
works. Akram et al. (Akram et al., 2018) explored
the security aspect of residential wireless local area
network (WLAN) AP in a real-time scenario. The po-
tential vulnerabilities in media access control (MAC)
filtering, Hidden Service Set Identifier (SSID), and
WPA2 have been investigated. They proposed a three-
layer security mechanism to secure the WLAN AP.

Ghanem et al. (Ghanem and Ratnayake, 2016)
explored potential attacks against WPA2 pre-shared
key (WPA2-PSK), such as deauthentication attacks.
This type of attacks will make Wi-Fi clients to re-
authenticate an AP with the attacker’s intent to cap-
ture the authentication keys during an 802.11 hand-
shake. To prevent this type of attacks, they pro-
posed a novel re-authentication protocol to improve
the 4-way handshake without any hardware upgrade
or cryptography algorithms. Their experimental re-
sults further showed that the proposed protocol ef-
fectively enhance the security of WPA2-PSK without
compromising the performance of the network.

Since 2017 (Vanhoef and Piessens, 2017; Van-
hoef and Piessens, 2018), researchers have been stud-
ied the effects of KRACK and detection methods to
identify the attacks. Fehér et al. (Fehér and Sandor,
2018) presented the effects of KRACK and its corre-
sponding user behavior analysis. A quantitative sur-
vey was created and filled out by 379 people. The sur-
vey results showed that many experienced users had
updated the security patch to avoid KRACK. How-
ever, many users tended to use weak passwords that
attackers can decrypt easily. While they argued that
the best solution to countermeasure KRACK is to up-
date each respective wireless device with its appropri-
ate security patch, some devices cannot be patched for
an update due to end-of-life support by vendors.

The security of the Internet of Things (IoT) is very
important as there are many IoT devices in our daily
life. Terkawi et al. (Terkawi and Innab, 2018) pre-
sented some major impacts of KRACK on IoT. They
studied how attackers can perform KRACK on IoT
and the potential damages that KRACK may pose on
IoT. They showed that KRACK not only will compro-
mise privacy but also will compromise the connected
access control and may pose potential long-term dam-
ages in IoT.

Chin et al. (Chin and Xiong, 2018) proposed a
framework called KrackCover, which is a wireless se-
curity framework for detecting KRACK. KrackCover
is designed to assist in the detection of KRACK and
to provide suggestions to help protect the privacy of

A Software-defined Networking-based Detection and Mitigation Approach against KRACK

245



clients. When KRACK is detected, the alert evokes
the client. KrackCover consists of two virtual ma-
chines (VMs), a mobile phone, and multiple wire-
less antennas for monitoring and capturing all 802.11
messages. For the two VMs, one is used for launch-
ing the attack, and the other is used for detecting the
attack. The experiment was carried out in real-world
Wi-Fi environments, including coffee shops and pub-
lic libraries.

Naitik et al. (Naitik et al., ) ran experiments of
KRACK and presented a detection scheme to detect
the threat. The detection was constructed with the fol-
lowing steps. First, the detection system extracted the
Ethernet layer of network packets followed by the ex-
traction of the IEEE802.1x header and then an extrac-
tion of the WPA key data. At last, the system checks
for duplicated message 3. Victims of the attack were
alerted if duplicate packets were detected.

To detect and mitigate KRACK, Securing
Sam (Sam, 2019) has developed a detector and
has given some mitigation suggestions (Securing
Sam, 2019), such as using Advanced Encryption
Standard (AES), disabling fast roaming, updating
Wi-Fi software in a manual fashion, and actively
monitoring for rogue APs.

SDN has become a popular paradigm due to its
programmability and characteristic of the global view
of a network which can easily be adapted to monitor
and manage network traffic. Many research studies
started to explore the use of SDN to improve net-
work performance and security (Shin et al., 2016;
Cheminod et al., 2017; Manzoor et al., 2018). In this
paper, we utilize the benefits of SDN controller and
proposed a detection and mitigation framework based
on SDN to defend against KRACK.

3 THE THREAT MODEL

KRACK utilizes the flaws of the Wi-Fi standard pro-
tocol to reinstall an already-in-use key. It aimed at
attacking the 4-way handshake of the WPA2 pro-
tocol by manipulating and replaying cryptographic
handshake messages. When a client attempts to con-
nect to a protected network through an AP, the hand-
shake is performed to verify the credentials of both
the AP and the client. In this paper, we focus on the
Linux/Android vulnerability due to the large magni-
tude of devices that are affected by it. KRACK occurs
in the following manners in details.

1. An attacker waits for a client/victim to connect
or reconnect to a Wi-Fi network AP. For the latter sit-
uation, an attacker transmits a specially crafted packet
to dissociate the client from the AP, also known as a

deauthentication attack. Prior to a client connecting
to the AP, the attacker leverages a separate rogue AP
that falsely broadcasts the SSID of a legitimate Wi-
Fi network. Client devices that connect and associate
to the attacker’s rogue AP present the ability for the
attacker to execute a MitM attack.

2. The attacker first detects the client’s connec-
tion attempt by capturing the wireless communica-
tion exchange for a WPA2 handshake packet. The at-
tacker then proceeds to stage a rogue Wi-Fi network
with a matching SSID to trick the victim’s machine to
connect to the attacker’s AP. Commonly, wireless de-
vices often connect to an AP with the strongest signal
strength unless designated by a user-defined param-
eter such as an operating system setting or a driver
configuration. A rogue AP for this attack case often
distinguishes itself from other Wi-Fi APs through the
signal strength metric to lure a victim machine to con-
nect to the rogue Wi-Fi network. An attacker may ac-
complish a MitM once a victim connects to a rogue
Wi-Fi network by means of the attacker forwarding
traffic between a legitimate network and the victim.

3. As the new MitM, the attacker then listens
for the WPA2 handshake. During this handshake,
the third message of the handshake exchanges a key
nonce that the attacker will withhold. The attacker
will take these packets and replay them multiple times
to the victim or a target machine. Because a pro-
tocol implementation bug in Linux/Android devices,
the WPA2 key will be cleared at which point the at-
tacker installs an all-zero key, or no encryption.

Effects of KRACK can be disastrous, as other
forms of encryption such as SSL/TLS may be re-
moved in combination with well-known methods. For
this reason, an attacker may obtain any information,
such as credit card numbers, personally identifiable
information, or authentication credentials with mini-
mal effort.

4 METHODOLOGY

We propose an SDN-based solution to detect and mit-
igate KRACK. The main modules in this framework
are detection and mitigation. Besides these two main
modules, we also implement an attack module in this
framework. The standard Wi-Fi protocol uses the 4-
way handshake to generate a session key, but it is vul-
nerable to key re-installation attacks. Figure 1 shows
the architecture of the proposed framework. While
the solid black lines represent the normal traffic go-
ing through the wireless network, the red dotted lines
show network traffic generated by attackers, and the
blue dashed lines indicate the wireless traffic with

SECRYPT 2019 - 16th International Conference on Security and Cryptography

246



Figure 1: The Proposed Framework.

detection and mitigation. The SDN controller has
a global view of this network so it can monitor and
manage client authentication requests.

Initially, because of the vulnerability of the 4-way
handshake, an attacker may attack the client easily
through the AP once the client is connected to this
network. When we adopt the SDN paradigm, the
SDN controller will monitor the traffic going through
the network. The AP functions as the OVS since all
end devices are connected to it. The detection module
and mitigation module are deployed on the SDN con-
troller in order to take advantage of the controller. As
shown in the blue dashed lines of Figure 1, labels 1, 2,
3, and 4 represent four different actions in this frame-
work, respectively. They are discussed in detail as fol-
lows. Label 1 represents that an attacker launches the
attack through AP. Label 2 indicates that the detector
on the SDN controller will a) monitor the traffic, b)
detect KRACK, and c) mitigate the attack traffic by
updating the flow table. Label 3 means that after the
SDN controller updates the entries of the flow table,
the attack traffic flows will be redirected to a splash
portal. Label 4 means if the traffic flow is not de-
tected as KRACK, it will be sent to the clients. To
be precise, we divide the framework into three stages:
1) attack stage, 2) detection stage and 3) mitigation
stage.

4.1 Attack Stage

Most Wi-Fi networks are protected by some version
of WPA or WPA2, which rely on the 4-way handshake
defined in the 802.11i protocol. However, the design
of the 4-way handshake has serious flaws that make
it vulnerable to key reinstallation attacks. In the at-
tack stage, we perform KRACK proposed in (Vanhoef
and Piessens, 2017; Vanhoef and Piessens, 2018). A
client/victim is tricked to reinstall an already-in-use
key so that the attacker can steal the victim’s personal
information and even inject false data. KRACK is

Figure 2: The Procedure of Attacking the 4-way Hand-
shake.

achieved by replaying and manipulating messages 3
of the 4-way handshake.

The attack procedure is shown in Figure 2. When
a client is trying to connect to a network, the 4-way
handshake will be executed. The 4-way handshake
provides mutual authentication based on the Pairwise
Master Key (PMK) (a shared master secret) and nego-
tiates a PTK. The PTK is derived from the PMK. The
supplicant (client) receives message 1 and sends mes-
sage 2 to the authenticator (AP). The supplicant will
install the PTK and the GTK after receiving message
3 from the authenticator. Then, a data-confidentiality
protocol will be used to encrypt normal data frames
after the installation of the PTK and the GTK. If the
supplicant does not send message 4 to the authenti-
cator as the response of acknowledgment, the authen-
ticator will think that message 3 may be dropped or
lost. Therefore, the authenticator will retransmit mes-
sage 3 to the supplicant. As a result, the supplicant
will receive message 3 multiple times. Each time the
supplicant receives message 3, the same PTK will be
reinstalled and the associated parameters, such as re-
ceive packet number (i.e. replay counter) and incre-
mental transmit packet number (i.e. nonce), are reset
to their initial values.

In KRACK, an attacker will first establish a MitM
position between the supplicant and the authenticator.
The attacker uses this MitM position to prevent mes-
sage 4 from arriving at the authenticator. Then, the
attacker can utilize the retransmission manner of mes-
sage 3 to reinstall an already-in-use PTK and force re-
set the value of nonce and replay counter. By reusing
the nonce and the replay counter, the attacker can at-
tack the data-confidentiality protocol, such as replay,
as well as decrypt and forge the packets. The above
can pose great threats to end user’s privacy.

A Software-defined Networking-based Detection and Mitigation Approach against KRACK

247



Figure 3: (a) Simplified Layout of an EAPOL Frame (b)
Procedure of the Detection Stage.

4.2 Detection Stage

Since every message in the 4-way handshake is de-
fined using EAPOL frames, it can be used to detect
the duplicated packets. As shown in Figure 3 (a),
the header defines the n-th message in the handshake.
The replay counter field is used to count the replay
frames. When the authenticator sends a message to
the supplicant, the replay counter will be increased
by one. If the supplicant receives the message and
replies to the authenticator, the same replay counter is
used. The nonce field can be used to detect the reuse
of nonce since it transmits the fresh session key that
derived from the random nonces generated by suppli-
cant and authenticator. Therefore, the replay counter
filed and nonce field are extremely helpful to detect
the reinstallation of an already-in-use key. To be pre-
cise, if message 3 is retransmitted, a duplicated nonce
will be transmitted and we just need to check if there
is a reuse of nonce.

The SDN controller will monitor all the traffic go-
ing through the network by the wireless interface. In
order to detect KRACK, the traffic packets need to
be filtered and captured only EAPOL packets. The
detection procedure is shown in Figure 3 (b). First,
the Ethernet layer is extracted. Then, the IEEE802.1x
header is extracted from the Ethernet layer. Next,
WPA key data is extracted from IEEE802.1x header.
At last, we analyze the WPA key data and check for
the duplicate message 3 from EAPOL packets. If the
reuse of nonce is detected, it will proceed to the miti-
gation stage. If there is no duplicated message 3, then,
it will examine the next traffic flow.

4.3 Mitigation Stage

In an SDN network, the controller manages the traffic
by adding rules in the flow table in the OVS. The con-
troller communicates with the OVS through a secure
channel, which is defined by the OpenFlow Protocol.
An entry of the flow table consists of three important
fields: a header field, an action field, and a statis-
tic field. The header field is used to define the flow
and the statistic field stores the network information
of the flow, such as time-stamp of a packet that was
last seen and the number of flows forwarded. The path
of a flow can be directed in the action field. The flow
can be handled by the following actions: forward to a
destination port or ports, encapsulate and forward to
the controller, or forward through the switch’s normal
processing pipeline.

In our study, we set up a splash portal to store at-
tack traffic. We utilized the characteristic of the SDN
network to update the flow rules in the flow table to
prevent the attack traffic to be forwarded to the client.
When KRACK is detected in the detection stage by
checking the duplication of message 3, it will pro-
ceed to the mitigation stage. In this stage, we add
a flow rule in the OVS to forward the attack traffic to
the splash portal instead of forwarding it to the client.
If there is no attack detected, the traffic will be for-
warded through its normal path. In this way, the at-
tack traffic will not be forwarded to the client. Mean-
while, we will send an alert to warn the clients.

4.4 Hardware Configuration

In this study, the experiment was set up in the lab en-
vironment. We constructed an SDN network to de-
tect and mitigate KRACK. We used a Raspberry Pi
3 Model B, which has the specification of a Quad
Core 1.2GHz Broadcom BCM2837 64bit CPU and
1GB RAM, as the SDN controller. We utilized
a wireless antenna, an Alfa AWUS036NHA High
Gain, to capture the nearby traffic. We setup Flood-
light (Big Switch Networks, 2018) controller to mon-
itor and update the flow rules. The detection and mit-
igation scripts were deployed on the SDN controller.
A TP-Link AC 1750 Router was used as the AP and
was configured as an OVS. A desktop with 16GB of
memory and a quad-core processor was used to host
two virtual machines: one was used as an attack ma-
chine and the other was used as a splash portal. The
attack machine was running Kali Linux operating sys-
tem with 2G of memory and a dual-core processor. To
launch KRACK, we utilized two wireless antennas,
a TP-Link WN722n v1 and an Alfa AWUS036NHA
High Gain. The splash portal was running Ubuntu

SECRYPT 2019 - 16th International Conference on Security and Cryptography

248



Table 1: Times Recorded in the Experiment.

Script Metrics Description

Attack Script
Atk1 Time at which attack script begins
Atk2 Time at which first message 3 was sent from authenticator
Atk3 Time at which the duplicated message 3 was sent from authenticator

Detection Script
Det1 Time at which first message 3 was detected
Det2 Time at which the duplicated message 3 was detected
Det3 Time at which mitigation starts

Mitigation Script Mtg Time at which mitigation ends

with 1GB of memory and a single core processor.
Lastly, we adopted a Samsung Galaxy S7 Edge to
connect to the SDN wireless network with WPA2 en-
cryption to test our experiment setup.

5 EVALUATION

To run the experiment, we first started the Flood-
light in the background to monitor the traffic going
through the network. Next, we configured the AP to
enable OVS functions. We have adopted an online
KRACK detector courtesy of Securing Sam’s Github
script (Sam, 2019) and modified it to meet the goal
in our experiment. We have also written a mitiga-
tion script to update the flow table and integrated it
with the modified detection script. The attack script is
adopted from (Vanhoef and Piessens, 2017) with little
modification. We have also modified both the attack
script and the detection script to keep track of impor-
tant time metrics as shown in Table 1. The detection
script makes use of raw sockets to allow for detailed
packet analysis. The analysis takes place byte by byte,
ensuring the packet meets the criteria of the message
3 in the WPA2 handshake before continuing. Finally,
once we capture the first message 3, the key nonce is
stored for future comparison against other packet key
nonces. Success at the detection stage led to the miti-
gation stage, and the controller will reroute the attack
traffic to the splash portal by updating the flow table.

5.1 Experimental Results

The time metrics recorded in the attack script, detec-
tion script, and mitigation script and their description
are showing in Table 1. There are three time metrics
in the attack script, three time metrics in the detection
script, and one time metric in the mitigation script.
By analyzing the time metrics recorded in the exper-
iment, we can obtain some important time measure-
ments such as detection time and mitigation time. We
extracted six time measurements to evaluate our de-

tection and mitigation scheme. The detailed descrip-
tion of six time measurements are given as follows:

1. KRACK Detection Time: It measures the time
of detecting KRACK. It is the time from the mo-
ment the authenticator sent the duplicated message 3
to the moment the duplicated message 3 is detected
by the detection module. Therefore, it is calculated
by Det2−Atk3.

2. KRACK Mitigation Time: It is defined as
the time from the moment the mitigation starts
to the moment the mitigation ends. That is,
KRACK Mitigation Time = Mtg−Det3. After the
duplicated message 3 is successfully detected, the
mitigation starts, the controller will update the flow
table to redirect the traffic to the splash portal. On the
splash portal, we use a socket to listen to the traffic
and record the time when we receive the first packet
redirected to it.

3. First Message 3 Detection Time: This is the
time of detecting the first message 3. It is the time
from the moment the authenticator sent the first mes-
sage 3 to the moment the first message 3 is detected
by the detection module. First message 3 detection
time is Det1−Atk2.

4. Overall Experiment Time: This measures the
overall time taken to run the experiment, from the
time at which attack starts to the time at which mit-
igation ends. It is calculated as Mtg−Atk1.

5. Attack Script Runtime: It is the time from the
moment the attack script begins to the moment the
authenticator sends the duplicated message 3. It can
be calculated as Atk3−Atk1.

6. Detection Script Runtime: This is the time be-
tween the first message 3 detected and the duplicated
message 3 detected. It measures the runtime of the
detection script. It can be calculated by Det2−Det1.

Figure 4 shows the six time measurements over
500 successful KRACK. The times are recorded in
milliseconds. We can see from the figure that the pat-
tern of KRACK detection time, first message 3 de-
tection time, and overall experiment time are similar.
Since KRACK detection time is the time between du-

A Software-defined Networking-based Detection and Mitigation Approach against KRACK

249



(a) (b)

(d) (e)

(c)

(f)

Figure 4: Time Measurements Recorded From 500 KRACK.

Table 2: Time Measurements (ms).

Time Name Mean Median Mode Max Min Std
KRACK Detection Time 170.926 163.527 164.819 303.315 12.738 70.410
KRACK Mitigation Time 10.041 10.107 8.351 11.992 8.01 1.176

First Message 3 Detection Time 233.832 227.832 49.839 366.092 49.839 72.805
Overall Experiment Time 296.467 268.851 336.879 479.595 132.003 71.930

Attack Script Runtime 115.456 112.279 109.22 217.079 108.312 12.085
Detection Script Runtime 0.475 0.341 0.318 6.464 0.192 71.930

plicated message 3 sent and detected and the first mes-
sage 3 detection time is the time between first mes-
sage 3 sent and detected, it demonstrates that our de-
tection rate is pretty robust. Figure 4 (b) presents the
mitigation time of KRACK, where we can see that the
mitigation time is evenly distributed. The mitigation
time includes the time controller responds to update
the flow table and the communication to OVS to nav-
igate the new path to the splash portal. Figure 4 (e)
and (f) shows the running time of both attack script
and detection script over 500 KRACKs. Most running
times during the attacks are stable except for some at-
tacks, they tend to have longer running time.

Table 2 shows the time analysis of these six
time measurements. We analyzed the mean, median,
mode, max, min and stand derivation of these time
measurements. We can see from the table, a success-
ful KRACK requires 115.456 ms on average while
the fastest KRACK detection time is 12.738 ms and
the fastest mitigation time is 8.01 ms. We can see that
the standard derivation of mitigation time is 1.176 ms,
which is very small. It shows that the mitigation time

is usually stable in our experiments. The average time
to detect the first message 3 packet is 233.832 ms. De-
tecting KRACK requires an average time of 170.926
ms, and we can see that the maximum KRACK detec-
tion time is much higher than the minimum KRACK
detection time. There could be a propagation delay in
the transmission due to the environmental constraints.

6 CONCLUSIONS AND FUTURE
WORK

In this research, we have proposed an SDN-based de-
tection and mitigation framework to defend against
KRACK. Because of the global view of an SDN
controller, we deployed our detection and mitigation
module on the SDN controller to better monitor and
manage the attack traffic. In the framework, we have
three stages: attack stage, detection stage, and mit-
igation stage. In the attack stage, an attacker tried
to deceive the authenticator to retransmit message 3

SECRYPT 2019 - 16th International Conference on Security and Cryptography

250



and trick the client to reinstall an already-in-use key.
In the detection stage, we monitor all the traffic go-
ing through the SDN network and check for the du-
plicated message 3 transmission to detect KRACK.
Finally, in the mitigation stage, the flow table was up-
dated to navigate the attack traffic to a splash portal.
The experiment was set up in a lab environment and
important time metrics were recorded for evaluating
the framework. Experimental results show that the de-
tection and mitigation scheme in the proposed frame-
work is very efficient to defend against KRACK.

In the future work, we will study the scalabil-
ity of the proposed framework. We will conduct the
experiments in a large scale real-world network. In
the meantime, we will try to attack multiple clients
by exploring different attacks within the umbrella of
KRACK and investigate machine learning schemes to
classify those attacks based on different attack types.

ACKNOWLEDGEMENT

We acknowledge NSF to partially sponsor the re-
search work under grants #1633978, #1620871,
#1636622, #1651280, #1620862, and #1620868, and
BBN/GPO project #1936 through an NSF/CNS grant.

REFERENCES

Akram, Z., Saeed, M. A., and Daud, M. (2018). Real
time exploitation of security mechanisms of residen-
tial WLAN access points. In IEEE iCoMET, pages
1–5.

Alblwi, S. and Shujaee, K. (2017). A survey on wireless se-
curity protocol wpa2. In Int. Conf. security and man-
agement, pages 12–17.

Cheminod, M., Durante, L., Seno, L., Valenza, F., Valen-
zano, A., and Zunino, C. (2017). Leveraging SDN
to improve security in industrial networks. In IEEE
WFCS, pages 1–7.

Chin, T. and Xiong, K. (2018). KrackCover: A wireless
security framework for covering KRACK attacks. In
WASA, pages 733–739.

Fehér, D. J. and Sandor, B. (2018). Effects of the
WPA2 KRACK attack in real environment. In IEEE
SISY, pages 239–242.

Ghanem, M. C. and Ratnayake, D. N. (2016). En-
hancing WPA2-PSK four-way handshaking after re-
authentication to deal with de-authentication followed
by brute-force attack a novel re-authentication proto-
col. In IEEE CyberSA, pages 1–7.

Kumkar, V., Tiwari, A., Tiwari, P., Gupta, A., and Shrawne,
S. (2012). Vulnerabilities of wireless security proto-
cols (WEP and WPA2). IJARCET, 1(2):34–38.

Manzoor, S., Akber, S. M. A., Menhas, M. I., Imran, M.,
Sajid, M., Talal, H., and Samad, U. (2018). An
SDN enhanced load balancing mechanism for a multi-
controller wifi network. In IEEE ICPESG, pages 1–5.

Big Switch Networks ([Online]. Sept. 2018).
Project Floodlight. Available: http://www.project
floodlight.org/.

Naitik, S., Lobo, R., Vernekar, P. S., and Shetty, V. G. Miti-
gation of key reinstallation attack in WPA2 Wi-Fi net-
works by detection of nonce reuse. In IRJET, pages
1528–1531.

Noh, J., Kim, J., Kwon, G., and Cho, S. (2016). Secure key
exchange scheme for WPA/WPA2-PSK using public
key cryptography. In IEEE ICCE-Asia, pages 1–4.

Sam, S. ([Online]. 2019). KRACK detector. Available:
https://github.com/securingsam/krackdetector.

Scott-Hayward, S., O’Callaghan, G., and Sezer, S. (2013).
SDN security: A survey. In IEEE SDN4FNS, pages
1–7.

Shin, S., Xu, L., Hong, S., and Gu, G. (2016). Enhancing
network security through software defined networking
(SDN). In IEEE ICCCN, pages 1–9.

Terkawi, A. and Innab, N. (2018). Major impacts of key
reinstallation attack on Internet of things system. In
IEEE NCC, pages 1–6.

Teyou, C. C. T. and Zhang, P. (2018). Solving downgrade
and DoS attack due to the four ways handshake vul-
nerabilities (WIFI). IJEMR, 8(4):1–10.

Tsitroulis, A., Lampoudis, D., and Tsekleves, E. (2014a).
Exposing WPA2 security protocol vulnerabilities.
IJICS, 6(1):93–107.

Tsitroulis, A., Lampoudis, D., and Tsekleves, E.
(2014b). ExposingWPA2 security protocol vulnera-
bilities. IJICS, 6:93–107.

Vanhoef, M. and Piessens, F. (2017). Key reinstallation at-
tacks: Forcing nonce reuse in WPA2. In ACM CCS,
pages 1313–1328.

Securing Sam ([Online]. 2019). KRACK attacks white
paper. Available: https://www.securingsam.com/in
dex.php/2017/08/03/
krackattacks/.

Vanhoef, M. and Piessens, F. (2018). Release the Kraken:
New KRACKs in the 802.11 standard. In ACM CCS,
pages 299–314.

Xie, J., Yu, F. R., Huang, T., Xie, R., Liu, J., and Liu,
Y. (2018). A survey of machine learning techniques
applied to software defined networking (SDN): Re-
search issues and challenges. IEEE Communications
Surveys & Tutorials.

Yan, Q., Yu, F. R., Gong, Q., and Li, J. (2016). Software-
defined networking (SDN) and Distributed Denial of
Service (DDoS) attacks in cloud computing environ-
ments: A survey, some research issues, and chal-
lenges. IEEE Communications Surveys & Tutorials,
18:602–622.

Yang, Q. and Huang, L. (2018). Overview of wireless se-
curity, attack and defense. In Inside Radio: An Attack
and Defense Guide, pages 1–5.

A Software-defined Networking-based Detection and Mitigation Approach against KRACK

251


