
Database Performance Comparisons:
An Inspection of Fairness

Uwe Hohenstein and Martin Jergler
Siemens AG, Corporate Technology, Otto-Hahn-Ring 6, Munich, Germany

Keywords: Performance, Comparison, Benchmark, Neo4j, PostgreSQL.

Abstract: Special benchmarks and performance comparisons have been published to analyze and stress the
outstanding performance of new database technologies. Quite often, the comparisons show that newly
upcoming database technologies provide higher performance than traditional relational ones.
In this paper, we show that these performance comparisons are not always meaningful and should not
encourage one to jump to fast conclusions. We revisit certain statements about comparisons between the
Neo4j graph database and relational systems and indicate a couple of possible reasons for coming up with
bad performance such as inappropriate or default configurations, and too straightforward implementations.
Moreover, we refute some stated issues about the bad performance of relational systems by using a
PostgreSQL database for commonly used test scenarios. We conclude with some considerations of fairness.

1 INTRODUCTION

Despite the dominating market share of relational
database management systems (DBMSs), new
database technologies permanently come up. Object-
oriented DBMSs proclaimed in the 90s a revolution,
promising to substitute traditional relational DBMSs
(RDBMSs). A little time later, XML databases arose
focussing on storing XML documents efficiently.

Since 2009, the NoSQL movement is gaining a
lot of attention. NoSQL stands for "not only SQL”
(http://www.nosql-database.org) although the name
has been chosen provokingly. Many products bring
up new ideas taking benefit from distribution, i.e.,
using a large amount of commodity computers to
scale out, or storing complex graph structures in a
specialized graph database.

Every new technology and its promoters claim
their products to be superior to traditional RDBMSs.
There are a lot of, sometimes emotional, discussions
on which technology is better, NoSQL or SQL.
(Moran, 2010) talks about techno-religious debates.

Those discussions are indeed very shallow from
a technical perspective. To make our discussion
more specific, we focus on the NoSQL category of
graph databases. Looking for existing comparisons,
we detected enthusiastic statements stressing the
advantages over RDBMSs accompanied by
performance measurements:
• “Graph databases outperform RDBMS on

connected data” (Khan, 2016)
• “The main benefit of native graph databases are

performance and scalability” (Khan, Ahmed,
and Shahzad, 2017)

• “So the graph database was 1000 times faster
for this particular use case” (Adell, 2013)

• “While MySQL did not finish within 2 hours,
Neo4j finished a traversal in less than 15
minutes” (Rodriguez, 2011).

Even if graph databases possess advantages which
are useful for specific applications, such general
statements must be treated carefully.

This led to our motivation for investigating those
statements in this paper. Thereby, our goal is not to
state that RDBMSs are still better. Rather we want
to stress on fairness – better unfairness – of such
statements and comparisons and prove our point of
view by measurements. This discussion of fairness
tackles several aspects such as:
• Is it equitable to take rather ad-hoc

configurations and settings?
• Is a warm start-up fair (especially if data sets

are larger than available main memory)?
• Is it fair to compare a query language (SQL)

with programming (e.g., Neo4j Pipes)?
• Are synthetic scenarios reasonable?
In particular, we show that:
• seemingly similar scenarios behave differently;
• database configurations and tuning are

important for performance and comparisons;

Hohenstein, U. and Jergler, M.
Database Performance Comparisons: An Inspection of Fairness.
DOI: 10.5220/0007926602430250
In Proceedings of the 8th International Conference on Data Science, Technology and Applications (DATA 2019), pages 243-250
ISBN: 978-989-758-377-3
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

243

• other data structures than the obvious or
traditional ones are advantageous;

• programming instead of using a query language
can improve performance.

The remainder of this paper is structured as
follows: In Section 2, we collect some related work
to underline the novelty of our investigation.

Afterwards, we elaborate in Section 3 upon
unfairness of existing comparisons and various
influencing factors before we conduct performance
measurements on PostgreSQL for common Neo4j
test scenarios in Section 4. In Section 5, we deduct
criteria for achieving a fair performance comparison.

Section 6 concludes the investigation and
presents some future work.

2 RELATED WORK

An early paper of (Hohenstein, et al., 1997)
criticizes standard benchmarks for object-oriented
database management systems (ODBMSs) like OO7
(Carey, et al., 1994) and statements made therein
like “ODBMSs are faster by factor 100”. In a case
study, a real application using Oracle was
transformed to several ODBMSs. The surprising
result of the performance measurements then
conducted that only a single ODBMS-based
implementation has the potential to be faster than the
original Oracle-based solution, while one ODBMS
was definitively much slower. Consequently, the
authors state that the best benchmark is the
application itself. The paper presents a methodology
for deriving application-specific benchmarks.

To our knowledge, no further work on fairness
of performance comparisons has been published so
far. Indeed, there are only some critical statements
from (Baach, 2015) “Comparing Neo4j to MySQL
without the use of Cypher is comparing apples and
oranges”. In the forum (Hacker, 2010) others also
argue that some comparisons are meaningless.

However, several performance investigations can
be found in the literature, which we tried to qualify.

(Khan, 2016) states that the technology of graph
databases is better than RDBMSs by explaining why
joins are bad for graph structures. He uses a simple
scenario that consists of Employees (E), Payments
(P) and Departments (D), related by one-to-many
relationships E-P and P-D. Then, qualifying two
departments by a query, the related payments are
retrieved via the employees. The complexity is
evaluated in Big-O notation. While RDBMS achieve
O(|E|*|P|) with nested loop joins and O(|E|+|P|) with
hash joins, Neo4j has an O(k) behavior. Neo4j’s

constant behaviour is explained as follows: “Using
hash indexing this gives O(1). Then the graph is
walked to find all the relevant payments, by first
visiting all employees in the departments, and
through them, all relevant payments. If we assume
that the number of payment results are k, then this
approach takes O(k).” However, it remains unclear
what “visiting all employees“ in Neo4j means and
how the internal data structures contribute to a better
performance compared to hash indexes in RDBMSs.

(Rodriguez, 2011) uses 1,000,000 nodes and
4,000,000 edges with a synthetic distribution:
Despite an average fan-out of 4, some nodes have a
higher number of edges. A test measures traversal
from a starting node to related nodes via 1 to 5 hops.
The result reveals that Neo4j is more than twice as
fast for 4 hops. For 5 hops, Neo4j required 14.37
minutes while MySQL was stopped after 2 hours.

The test of (Adell, 2013) detects if one person is
connected to another in 4 or fewer hops. The data set
contains 1,000,000 users with an average of 50
friends. Neo4j required 2ms for the check, while an
RDBMS was stopped after running several days.

Another comparison (Baach, 2015) uses 100,000
and 1,000,000 nodes with exactly 50 edges each. A
test counts the number of friends up to 5 hops. As a
surprising result, MySQL was about 6 times faster
than Neo4j. One potential reason for that might be
the use of the Cypher query language to perform
queries while (Rodriguez, 2011) sticks to the Pipes
framework, which seems to be very beneficial.
(Baach, 2015) considers a comparison SQL vs. the
Cypher language as fair, whereas SQL vs. Pipes
being unfair. Another reason for the result might be
some deeper thoughts about configuring MySQL.

(Vicknair et al, 2010) experiment with data sets
of size 1,000, 5,000, 10,000 and 100,000 nodes. In
contrast to others, they set up a direct acyclic graph.
Several tests traverse the graph, and count the nodes,
with 4 and 128 hops, count the number of nodes
with a certain payload, particularly with “<”
comparisons, and find all the orphan nodes. In
general, the execution times are less than 200 ms,
and do not show huge differences between Neo4j
and MySQL. In fact, the data sets are small and
enable in-memory processing.

(Khan, et al., 2017) compare Oracle 11g and
Neo4j using a Medical Diagnostic System. The data
set comprises about 28,000 patients, 625,721 patient
visits, 869,666 patient-IssueMed records, to mention
the main tables. Five count queries join two or three
tables. While Oracle performs queries in a few
seconds (depending on the query), Neo4j requires
about 0.3 sec.

DATA 2019 - 8th International Conference on Data Science, Technology and Applications

244

(Joishi and Sureka, 2015) use some process-
mining algorithms for their comparison of MySQL
and Neo4j: finding similarity between actors based
on the intersection of activities and analysing causal
dependencies between actors in carrying out a
business process. MySQL is 32 times faster than
Neo4j for similarity, while Neo4j attains a perform-
ance boost of a magnitude of 7x over MySQL for
the second test.

(Martinez et al., 2016) also compare the per-
formance of MySQL and Neo4j. Using three
randomly generated data sets (1,000, 10,000 and
100,000 entries), 12 multi-join queries of a health
application are tested. MySQL performs better than
Neo4j in most cases but has a poor performance for
larger data sets. It is important to note that no
indexes were added in both database systems.

3 FAIRNESS OF COMPARISONS

In the following, we explain why we think that
published performance comparisons are unfair and
should be seen sceptically.

3.1 Scope of Comparison

As already mentioned, the literature contains many
exciting statements about the Neo4j performance.
For example, (Khan, 2016) proves that graph data-
bases are better than RDBMSs by a theoretical
comparison of internal algorithms based on Big Os
without explaining in detail why the internal Neo4j
structures are better. A comparison of technologies
at that level is not valid anyway.

Similarly, a comparison between a product X
and RDBMSs in general as in (Adell, 2013) is
wrong per se: Showing that Neo4j is faster than
MySQL does not prove that Neo4j is faster than any
relational DBMS. There are other products, too.

3.2 Small Test Data Sets

Performance tests are often performed with small
data sets, e.g., 1000, 5000, 10,000 (Vicknair et al,
2010). Even graphs with 100,000 nodes (Baach,
2015) are not really large. This means that a test is
basically testing in-memory capabilities: All the data
fits into the accordingly sized memory.

These evaluations are only representative for
applications for which the memory is available w.r.t.
the amount of data. Results cannot be generalized
for larger data sets since they do not cover disk
accesses, which will then certainly be required.

3.3 Warm Start

The first execution of a query is slow because data is
fetched from disk and the query execution plan has
to be derived. Further executions, also with different
values, are faster because the execution plan is
already available and data is in the cache. That is
why performance comparisons like (Baach, 2015)
first initialize the cache by fetching all the needed
data in a warm start. Moreover, the cache size is
perfectly adjusted. This sounds reasonable at a first
glance, but usually not a few (tested) tables are used
and accessed in applications. Accesses to other
tables will interfere and disturb the first cached data,
but remain untested. Hence, a warm start is
representative only if all the data – not only that
used in tests – fits into memory completely.

3.4 Using Standard Configurations

DBMSs possess many parameters, which are
important for performance. However, in
performance comparisons, standard configurations
are used more or less. For example, (Martinez et al.,
2016) state that “The deployed database servers
were not optimized” and “No index was added to the
basic implementation”.

The cache size is one important parameter,
which is partially considered. Other parameters, e.g.,
the space for temporal data, affect sorting and
eliminating duplicates. Indeed, tuning database
configurations can speed up accesses drastically.

3.5 Over-tuning

If a benchmark stimulates only a few parts of an
application, tuning the benchmark can lead to a
highly optimal test program for exactly that portion.
There is a danger of over-tuning a specific scenario
or query (especially with a warm start). However,
such a specific tuning might have a negative and
invisible impact on other – potentially non-tested –
scenarios such as inserts or deletes.

3.6 Synthetic Test Scenarios

Most of the published benchmarks and comparisons
are synthetic in the sense that they abstract from
concrete applications. They aim at being generic
hand and reducing the effort for implementing and
performing tests. (Barry, 1994) states that it is easy
to spend $100,000 for implementing a benchmark,
especially if tests have to be implemented on
severval systems. Certainly, standard and simplified

Database Performance Comparisons: An Inspection of Fairness

245

benchmarks help to reduce the implementation
effort. However, it is questionable whether those
tests are representative for a particular application.
Results of comparisons are only representative if
tests coincide with the application in mind. Thus, the
tested operations must reflect the characteristic
accesses of a given application.

Most comparisons fail in this respect. For
example, benchmarks for graph databases use a
configurable number of nodes and relationships
(e.g., Vicknair et al, 2010), thereupon performing
typically traversals along connections between nodes
as the use case. The tests are thus rather synthetic.
Thus, it is not possible to adapt a benchmark to the
demands of a specific application beyond con-
figuring some few parameters. Tests are performed
by changing a few factors such as the number of
nodes (Vicknair et al, 2010) (Baach, 2015) or the
fan-out of relationships. Such a parameterization
does not help to let a benchmark become more
representative. It is legitimate to question whether
simple and slightly configurable tests could be
representative for an application at all.

There are mostly no tests for mixed scenarios
with queries, inserts, updates, and deletes combined
in one test. Hence, just a few isolated features are
compared. Real life applications surely perform
other accesses.

Furthermore, there are different understandings
of what a traversal is. Sometimes, a traversal
retrieves all related nodes via up to n hops,
sometimes it only counts the connected nodes. Other
tests determine all possible connections between two
nodes, or simply detect whether two nodes are
related via up to n hops. Beside the fact that such
tests are scenarios that are advantageous for graph
databases, these similar scenarios show huge
differences in performance as we will see later.

3.7 Implementation Issues

Some comparisons compare tests written in pure
SQL with the procedural Neo4j Pipes framework
instead of the Cypher query language. Moreover, the
test of (Baach, 2015), comparing SQL with the
Neo4j Cypher query language, comes along with a
winner MySQL. Obviously, the Cypher language
does not perform as well as the Pipes framework.
We doubt that comparing SQL with the Pipes
framework is fair.

Another point is about using a straightforward
database schema. There are other options partially
requiring stored procedures, which should be tried
out in a comparison.

3.8 Data Distribution

Performance typically depends not only on the test
scenario and test data such as the number of nodes
and the number of edges, but also on the distribution
of data for individual nodes. For example, the
selected starting node is relevant, since each node
has a different number of related nodes over n hops.
The best implementation solution can change when
using different start and end nodes!

3.9 Evaluation

Even if a benchmark seems to be representative, the
evaluation results may be unfair and may diminish
the value of the results. Typically, several test sce-
narios for traversals, inserts, removals, queries are
performed, being simple in nature and executed in
isolation and independent of each other. Also, each
test is often parameterized leading to several results.

Thus, a benchmark comprises a collection of in-
dependent results. This means particular per-
formance values have to be somehow aggregated in
order to get an overall result. Detailed analyses are
possible, but it is questionable how to correctly
extrapolate from results for simple operations to
complex logic of the real application. A particular
system is able to win a comparison by just
aggregating and interpreting the results in the right
way – a system might have won most test cases,
have best average over all the test cases, be leading
for some “relevant” weighting of test cases etc.

4 PERFORMANCE TESTS

All these issues often lead to results proving that
graph databases are 100 times faster than relational
systems, (Adell, 2013). Such statements, worded
quite general, must at least be seen relative to the
test scenarios and their relevance.

In order to support our statements, we performed
some experiments with a PostgreSQL database. We
intentionally used an older version 9.5 because
several comparisons of RDBMS vs. Neo4j are also
older. Hence, there is no advantage for the RDBMS
by using the most recent state of technology.

We take three “traversal” scenarios from
published comparisons: Scenario ALL(n) starts with
a random node and determines all nodes reachable
by less than n hops. Another scenario PATHS(n)
determines only the paths between two given nodes
related by k hops, while EXISTS(n) checks whether
two given nodes are related by k hops, k<=n.

DATA 2019 - 8th International Conference on Data Science, Technology and Applications

246

Table 1: PATHS(5) results for investigating indexes.

Test1 Cold Start Warm Start
 First [sec] First [sec] Second [sec]
Index Ø stdev Ø stdev Ø stdev
no 62.88 3.26 59.67 0.60 60.25 1.74
yes 23.78 5.27 4.54 1.55 6.43 1.17

The tests ran in an isolated environment without
any parallel database accesses or other running
applications. Each test was performed 3 times. The
average of measurements was taken. All the tests use
the same laptop running Windows 7 with a dual-core
processor, 12 GB of RAM, and a 465 GB SSD disk.
Hence, the machine is not oversized.

It is important to note that we do not perform a
direct comparison with Neo4j – because benchmarks
are unfair. Instead, our goal is to put some published
statements into perspective.

4.1 Test Results for 500,000 Nodes

We experimented with two differently sized
databases. The first database contains 500,000 nodes
with 50 edges to other randomly selected nodes.

Test 1: Impact of Indexes for Scenario PATHS.
Our test series starts with a PostgreSQL standard
configuration (especially a very small cache size of
128 MB). We apply the frequently used database
schema of (Adell, 2013) consisting of one table
Friends (id int, friend int). Each node is identified by
a unique id; friend is a foreign key that refers back to
a friend’s node, i.e., all those records that refer to the
same id form the collection of friends for that node.

The first test has the purpose to illustrate the
impact of indexes. A corresponding SQL query for
Scenario PATHS(5) is sketched out in Figure 1.

select f1.id, f2.id, f3.id, f4.id, f5.id, f5.friend
from Friends f1
join Friends f2 on f2.id=f1.friend
join Friends f3 on f3.id=f2.friend
join Friends f4 on f4.id=f3.friend
join Friends f5 on f5.id=f4.friend
where f1.id = :x and f5.friend = :y
union
select f1.id, f2.id, f3.id, f4.id, f4.friend, null …
union
select f1.id, f2.id, f3.id, f3.friend, null, null ...
union
select f1.id, f2.id, f2.friend, null, null, null ...
union
select f1.id, f1.friend, null, null, null, null
from Friends f1 where f1.id = :x and f1.friend = :y;

Figure 1: SQL statement for Scenario PATHS(5).

The query computes the complete paths including all
the intermediate nodes; :x and :y represent the start
and end nodes, resp. The query is executed after a
restart of the computer (cold start), and afterwards
simply immediately executed additional three times,
now with a “warm” cache. In a second step, different
start and end points are taken for the same query.
Results are summarized in Table 1.

The test pinpoints a huge difference: Indexes are
essential for achieving performance – this is not a
surprise. The difference is even higher for a warm
start. A lack of basic indexes – maybe due to a too
naive implementation or a standard configuration
(cf. Section 3.4) – can heavily falsify benchmark
results.

Due to the obvious need for indexes, all the
further tests will be done with indexes.

Test 2: Cold/Warm Start.
Table 1 also contains the PATHS(5) results for a
comparison between warm and cold start. The
intention of this test is to investigate how the system
behaves in case of loading data from disk. This is
relevant since we cannot assume all the data in
memory for larger applications.

The difference between cold and warm start is
minimal for the test without indexes because table
data has to be loaded anyway. Using indexes, there
is a large difference between cold and warm start.
Thus, a test should not only be restricted to warm
start tests (cf. Section 3.3).

Test 3: Implementation Variants.
The next test illustrates the impact of query tuning.
Scenario EXISTS checks the existence of
connections between two nodes. In contrast to
PATHS, we are satisfied with an answer, connected
or not. There are at least three possible queries:
a) simply perform the query for PATHS (cf.

Figure 1) and check for a non-empty result;
b) add a LIMIT 1 at the end of the PATHS query to

obtain just a single first connection;
c) add a LIMIT 1 for each sub-query in order to

stop the execution early after the first hit:
(select f5.friend … limit 1) union … union
(select f1.friend … limit 1)

Table 2 shows the enormous speed-up for Variant c).
Consequently, searching for alternative implementa-
tions or queries can be very effective – even if as
simple as here! Taking one straightforward solution
is not reasonable (cf. Section 3.7). Note that no
connections for 1 to 4 hops exist for our test. Hence,
the multi-join queries are executed.

Database Performance Comparisons: An Inspection of Fairness

247

Test 4: Data Distribution.
Next, we show that test data and parameters have an
impact on performance (cf. 3.8). We use PATHS(5)
with different start and end nodes, resulting in
different numbers of connections. Table 2 shows
how execution times depend on the chosen start and
end nodes, and. The smaller the number of retrieved
connections is, the faster the query performs.

Table 2: Results for Test 3, 4, and 5.

Test

Variant

Cold [sec] Warm [sec] Ø stdev Ø stdev
Test 3 a) 23.78 5.27 4.54 1.55

 b) 19.81 1.61 4.79 1.07
 c) 2.39 0.13 0.057 0.02

Test 4 479 recs 15.18 1.27 3.32 0.64
797 recs 23.78 5.27 4.54 1.55

Test 5 128MB 23.78 5.27 4.54 1.55
1024MB 25.58 0.92 0.46 0.03

Similarly, the order of sub-queries is important
for Scenario EXISTS(5) in Test 3. If there are no
hop-1 and hop-2 but hop-3 connections, the query is
fastest if the hop-3 sub-query occurs first and
immediately stops execution. The possibility of
choosing the right nodes has an influence on results.
Knowing the data set, the implementation can be
“improved”. This is also a form of over-tuning (cf.
Section 3.5) by consciously “tuning” the order of
sub-queries according to data.

Test 5: Larger Cache Size.
The default cache in PostgreSQL with 128MB is far
too small for our table data of 864 MB and index
data of 1607 MB. Only 5% of the overall data fits
into the cache. Consequently, many reads happen
from disk. To improve the cache hit ratio, we
increase memory by factor 8 to 1024 MB in order to
have more data in memory, but still not sufficient to
keep all the data.

The results for PATHS(5) with a larger cache are
also presented in Table 2. The difference between a
small (default) and large cache for a cold start is
ignorable; the data must be fetched from disk
anyway. However for a warm start, we recognize
more than factor 8 of speed up. That is, sticking to
default configurations falsifies results (cf. 3.4).

Please note there are many further tuning
parameters, e.g., the use of temporal space to speed
up sorting and duplicate elimination.

Test 6: Different Implementations and
Structures.
So far, we have used straightforward table structures
and SQL for “implementing” the scenarios. How-

ever, there are alternatives for data structures and/or
implementing the computation logic, which are often
not considered (cf. Section 3.7). For example, in-
stead of a table Friends(id, friend), we can use an
array-valued column in a table FriendsWithArray(id
int, friends int[]). Each node is represented by just a
single record independent of the number of friends.

Turning to Scenario ALL, the query for getting
the nodes for 4 hops starting with :x looks like:

select distinct f1.id as fid, f1.friends into tmp3
from FriendsWithArray f1 where f1.id = :x;

insert into tmp3 select distinct f2.id, f2.friends
from FriendsWithArray f1, FriendsWithArray f2,
 generate_subscripts(f1.friends,1) i1,
where f1.id = :x and f1.friends[i1] = f2.id
union ... union
select distinct f4.id, f4.friends
from FriendsWithArray f1, FriendsWithArray f2,
 generate_subscripts(f1.friends,1) i1,
 generate_subscripts(f2.friends,1) i2,
 FriendsWithArray f3, FriendsWithArray f4,
 generate_subscripts(f3.friends,1) i3,
where f1.id = :x and f1.friends[i1] = f2.id
and f2.friends[i2] = f3.id and f3.friends[i3] = f4.id

Figure 2: Query for ALL scenario with arrays.

f1.friends is an array that contains the friends of the
1st hop. The built-in function generate_subscripts is
applied to an array-valued column and returns a set
of indices to which a variable i can then be bound.
The variable is used to access a the i-th field in the
array by means of friends[i] to be used in joins
between array elements (i.e., sons) and Ids.

Test ALL(4) “Old” is computed with a single
SQL query similar to Figure 1, however, returning
related nodes for a start node :x instead of paths. The
“New” variant proceeds stepwise using a stored
procedure following the query structure of Figure 2.
The result is stored in a temporary table tmp4, which
is then used in another query to unnest the node Ids:

select distinct t3.id, friends[i] as friend into tmp4
from tmp3 t3, generate_subscripts(t3.friends,1) i

For ALL(5) “New”, two additional steps are added:

select f5.id, f5.friends into tmp5
from FriendsWithArray f5, tmp4 t4
where f5.id = t4.friend;

select distinct t5.friends[i] -- unnest
from tmp5 t5, generate_subscripts(t5.friends,1) i;

Table 3 shows that the computation of related

nodes over 5 hops is possible in about half a minute
– as opposed to several hours as stated in
(Rodriguez, 2011) (Adell, 2013). As expected, the
results with the larger cache size are even better.

DATA 2019 - 8th International Conference on Data Science, Technology and Applications

248

Table 3: Results for Scenario ALL.

Variant [sec]

Small Cache Large Cache Ø stdev Ø stdev
ALL(4) “Old” 16.43 3.21 16.28 2.87
ALL(4) “New” 8.76 3.54 4.54 1.98
ALL(5) “New” 28.67 3.26 24.55 1.75

The improved performance is paid by some
drawbacks. The table violates the first normal form
but is still easy (maybe even easier) to understand.
Also, inserts and deletes become more complicated.
A stored procedure might help to handle the logic.

Test 7: Differences in Traversal Scenarios.
Comparing the previous results, we recognize the
different performance behaviour of the various
“traversal” scenarios ALL/PATHS/EXISTS: In a
warm start, PATHS(5) is fast with about 5 seconds,
and EXISTS(5) is even very fast (a few milli-
seconds) with an optimized query. However, finding
nodes in ALL(5) is slower with half a minute. This
illustrates how important the chosen scenario and its
semantics is, even if scenarios might look quite
similar (cf. Section 3.6).

Test 8: JDBC Configuration.
So far, we have executed tests interactively with the
PostgreSQL console. However, database access will
be typically invoked by means of JDBC, ADO.NET,
or an object/relational mapping tool. Hence, another
factor enters the game having impact on
performance.

We consider fetching the query result in Java
with JDBC. One important option in JDBC is the
fetch size, which can be set by setFetchSize(n). The
fetch size determines how many records are
transferred from the database server to the client
program: If a record is requested by the client, a bulk
of n records is physically prefetched, already serving
this and the next n-1 successive requests, too.

We used ALL(4) and executed the “Old” query
with different fetch sizes. The query executed in 30
seconds with a size of 1 (typically being the default)
and 18 seconds with a size of 1000. This a huge
difference, especially since the query execution itself
consumes about 15 sec. Again, relying on defaults
affects the performance negatively (cf. Section 3.4).

4.2 Second Database

In order to elaborate more on another facet of 3.8,
we use a larger database with 5,000,000 nodes each
having four randomly chosen friends. The results for
the bad performing One-SQL-statement of ALL(n)

(cf. Figure 1) are shown in Table 4. Even n=9 and
n=10 achieve moderate execution times despite the
higher number of hops. Thus, compared to the
previous database, the fan out seems to be one
decisive factor for performance results (cf. 3.8).

Table 4: Results for ALL scenario (large cache).

Cold [sec] Warm [sec] Number of
returned valuesØ stdev Ø Stdev

ALL(9) 20.66 0.22 8.01 0.05 334,247
ALL(10) 37.44 3.86 26.40 0.41 1,172,908

5 THOUGHTS ABOUT FAIRNESS

Having discussed some performance scenarios and
thereby achieving different results than often
presented in the literature, we turn to the question
what fairness of performance comparisons means.

At first, it is an absolute precondition for fairness
to supply the same environment with the same
resources such as hardware, processor, operating
system, network, disks, RAM, degree of test
isolation and the same overall test conditions etc.

But if the size of memory for the DBMS is pre-
fixed, it is starting to become unfair. DBMSs like
Neo4j are Java-based and execute queries at the
client, making a lot of memory in the JVM more
advantageous. RDBMSs process queries in the
server instead. Consequently, a smaller JVM might
be sufficient in order to leave more RAM for the
DBMS. Hence, resources cannot be set equally for
all the test candidates since the settings not only
depend on an application and its data, but also on the
type of DBMS.

The rules for performing benchmarks also have a
strong impact on the expressiveness of results.
Conditions must not be too restrictive: Every test
should implement the same universe of discourse
with the same functionality. But a tester should not
be forced to use a specific database schema, a query
language etc. For example, benchmarks for
ODBMSs, e.g., (Carey, DeWitt, and Naughton,
1994), often dictated testers the same neutral
implementation. Instead, there should be freedom
for using SQL or not.

The execution of benchmarks or tests often relies
on default configurations. Parameters such as the
database cache size are set to default or configured
at good guess, and tuning is neglected. The OO7
benchmark (Carey, DeWitt, and Naughton, 1994)
legitimates such a proceeding by stating that normal
programmers cannot tune a system effectively. This

Database Performance Comparisons: An Inspection of Fairness

249

statement is doubtful in our opinion. Most DBMSs
do require an appropriate tuning in order to optimize
performance. As we have demonstrated, simple
tuning measures like creating indexes already
improve performance considerably; but there are
much more screws to turn. This potential must be
used for sustainable results.

Performance comparisons are certainly fair if
infinite time is at the tester’s disposal. This is quite
infeasible, however, the following attenuation makes
sense: Each tester of a DBMS should obtain the
same, sufficient, amount of time. Furthermore, each
implementer of a test must have the same degree of
skills and knowledge of a particular database
candidate. Otherwise, different skills should be
considered for restricting the time. Anyway, the time
limit must not be too tight, there should be sufficient
time to avoid too straightforward, often naive,
solutions. Having enough time allows a programmer
to try out concepts in several variants and to tune the
overall system.

Finally, it is important to have realistic and
holistic test scenarios. This particularly means that
scenarios should cover representative and complete
use cases with a mixed set of operations. This also
reduces the risk of over-tuning and evaluating or
aggregating partial results in a convenient manner.

6 CONCLUSIONS

Publications about new database technologies often
claim to be superior to traditional technologies such
as relational database products. This is proven by
means of technical performance comparisons.

We picked up some published statements that
compare the graph database Neo4j with relational
systems coming up with some huge performance
gains for Neo4j. The overall goal of this paper was
to discuss those “sweeping” statements. We revealed
some common test scenarios with a PostgreSQL
database and illustrated a huge spectrum of
performance depending on factors such as
configuration, database schemas, tuning etc.
Moreover, we achieved good results for those
critical scenarios that were proven to be bad for
RDBMSs. One important conclusion was that a
good and comparable performance can often be
achieved if doing it in the right way. The message
should be that each system can be tuned for
particular use cases: A deeper investigation becomes
absolutely indispensable for reliable results.

Hence, we want to encourage people to perform
own benchmarks if tools have to be compared

instead of blindly believing in published
comparisons. We made an attempt to give some
recommendations to achieve fair comparisons.

Our future work will enlarge the scope to other
NoSQL categories. That said, we want to focus on
covering further potential advantages of NoSQL
products such as distribution, scalability etc.

REFERENCES

Adell, J., 2013. Performance of Graph vs. Relational
Databases. https://dzone.com/articles/performance-
graph-vs [last access 2019/5/1].

Baach, J., 2015. Neo4j Performance Compared to
MySQL. https://baach.de/Members/jhb/neo4j-per-for
mance-compared-to-mysql [last access 2019/5/1].

Barry, D., 1994. Should you take the plunge? Object
Magazine 3(6), 1994.

Carey, M., DeWitt, D. and Naughton, J., 1994. The OO7
Benchmark. ACM SIGMOD 1994.

Hacker, 2010. NoSQL vs. RDBMS: Let the flames begin.
https://news.ycombinator.com/item?id=1221598 [last
access 2019/5/1].

Hohenstein, U., Pleßer, V. and Heller, R., 1997.
Evaluating the Performance of Object-Oriented
Database Systems by Means of a Concrete
Application. 8th DEXA Workshop, Toulouse 1997.

Joishi, J. and Sureka, A., 2015. Graph or Relational
Databases: A Speed Comparison for Process Mining
Algorithm. Proc. Of 19th International Database
Engineering & Applications Symposium, Yokohama,
2015.

Khan, W., Ahmed, W. and Shahzad, E., 2017. Predictive
Performance Comparison Analysis of Relational &
NoSQL Graph Databases. Int. Journal of Advanced
Computer Science and Applications 8(5), January
2017.

Khan, Q., 2016. Why Graph Databases Outperform
RDBMS on Connected Data. https://dzone.com/
articles/why-are-native-graph-databases-more-efficient
-than [last access 2019/5/1].

Martinez, A., Mora, R., Alvarado, D. et al., 2016. A
Comparison between a Relational Database and a
Graph Database in the context of a Personalized
Cancer Treatment Application. Proc. of Alberto
Mendelzon International Workshop on Foundations of
Data Management, Panama City 2016.

Moran, B., 2010. RDBMS vs. NoSQL: And the Winner
is http://www.itprotoday.com/microsoft-sql-server
/rdbms-vs-nosql-and-winner, 2010 [last access
2019/5/1].

Rodriguez, M., 2011. MySQL vs. Neo4j on a Large-Scale
Graph Traversal. https://dzone.com/articles/mysql-vs-
neo4j-large-scale [last access 2019/5/1].

Vicknair, C., Macias, M., Nan. X., et al., 2010. A Com-
parison Between a Graph and a Relational Database: A
Data Provenance View. Proc. of 48th Annual
Southeast Regional Conference, 2010, Oxford, (USA).

DATA 2019 - 8th International Conference on Data Science, Technology and Applications

250

