REFERENCES
Abreu, R., Zoeteweij, P., and v. Gemund, A. J. C. (2009a).
Spectrum-based multiple fault localization. In 2009
IEEE/ACM International Conference on Automated
Software Engineering, pages 88–99.
Abreu, R., Zoeteweij, P., and Van Gemund, A. J. C. (2009b).
A new bayesian approach to multiple intermittent fault
diagnosis. In Proceedings of the 21st International
Jont Conference on Artifical Intelligence, IJCAI’09,
pages 653–658.
Adamovits, P. J. and Pagurek, B. (1993). Simulation
(model) based fault detection and diagnosis of a
spacecraft electrical power system. In Proceedings of
9th IEEE Conference on Artificial Intelligence for Ap-
plications, pages 422–428.
Aghasaryan, A., Fabre, E., Benveniste, A., Boubour, R., and
Jard, C. (1997). A petri net approach to fault detec-
tion and diagnosis in distributed systems. ii. extending
viterbi algorithm and hmm techniques to petri nets. In
Proceedings of the 36th IEEE Conference on Decision
and Control, volume 1, pages 726–731 vol.1.
Aghasaryan, A., Fabre, E., Benveniste, A., Boubour, R., and
Jard, C. (1998). Fault detection and diagnosis in dis-
tributed systems: An approach by partially stochastic
petri nets. Discrete Event Dynamic Systems, 8(2):203–
231.
Alekseev, D. and Sayenko, V. (2014). Proactive fault detec-
tion in computer networks. In 2014 First International
Scientific-Practical Conference Problems of Infocom-
munications Science and Technology, pages 90–91.
Balaban, E., Narasimhan, S., Cannon, H. N., and Brown-
ston, L. S. (2007). Model-based fault detection and
diagnosis system for nasa mars subsurface drill pro-
totype. In 2007 IEEE Aerospace Conference, pages
1–13.
Ben-Haim, Y. (1980). An algorithm for failure location in a
complex network. Nuclear Science and Engineering,
75(2):191–199.
Benbouzid, M. E. H., Vieira, M., and Theys, C. (1999). In-
duction motors’ faults detection and localization using
stator current advanced signal processing techniques.
IEEE Transactions on Power Electronics, 14(1):14–
22.
Beschta, A., Dressler, O., Freitag, H., Montag, M., and
Struss, P. (1993). Model-based approach to fault lo-
calization in power transmission networks. Intelligent
Systems Engineering, 2:3 – 14.
Besz
´
edes,
´
A. (2019). Interdisciplinary survey of fault local-
ization techniques to aid software engineering. Acta
Polytechnica Hungarica, 16(3):207–226.
Boubour, R., Jard, C., Aghasaryan, A., Fabre, E., and Ben-
veniste, A. (1997). A petri net approach to fault de-
tection and diagnosis in distributed systems. i. applica-
tion to telecommunication networks, motivations, and
modelling. In Proceedings of the 36th IEEE Confer-
ence on Decision and Control, volume 1, pages 720–
725 vol.1.
Bouloutas, A. T., Hart, G. W., and Schwartz, M. (1993).
Fault identification using a finite state machine model
with unreliable partially observed data sequences.
IEEE Transactions on Communications, 41(7):1074–
1083.
Brodie, M., Rish, I., and Ma, S. (2002). Intelligent probing:
A cost-effective approach to fault diagnosis in com-
puter networks. IBM Systems Journal, 41(3):372–385.
Brodie, M., Rish, I., Ma, S., and Odintsova, N. (2003). Ac-
tive probing strategies for problem diagnosis in dis-
tributed systems. In Proceedings of the 18th Interna-
tional Joint Conference on Artificial Intelligence, IJ-
CAI’03, pages 1337–1338, San Francisco, CA, USA.
Morgan Kaufmann Publishers Inc.
Chao, C. S., Yang, D. L., and Liu, A. C. (1999). An
automated fault diagnosis system using hierarchical
reasoning and alarm correlation. In Proceedings
1999 IEEE Workshop on Internet Applications (Cat.
No.PR00197), pages 120–127.
Chen, M., Zheng, A. X., Lloyd, J., Jordan, M. I., and
Brewer, E. (2004). Failure diagnosis using decision
trees. In Proceedings of the International Conference
on Autonomic Computing, pages 36–43.
Cheng, L., Qiu, X., Meng, L., Qiao, Y., and Boutaba, R.
(2010). Efficient active probing for fault diagnosis in
large scale and noisy networks. In 2010 Proceedings
IEEE INFOCOM, pages 1–9.
de Kleer, J. (2009). Diagnosing multiple persistent and in-
termittent faults. In Proceedings of the Twenty-First
International Joint Conference on Artificial Intelli-
gence (IJCAI 2009), pages 733–738.
de Kleer, J. and Williams, B. C. (1987). Diagnosing multi-
ple faults. Artificial Intelligence, 32(1):97 – 130.
Deng, R. H., Lazar, A. A., and Wang, W. (1993). A proba-
bilistic approach to fault diagnosis in linear lightwave
networks. IEEE Journal on Selected Areas in Com-
munications, 11(9):1438–1448.
Digernes, T. (1980). Real-Time Failure-Detection and
Identification Applied to Supervision of Oil Transport
in Pipelines. Modeling, Identification and Control,
1(1):39–49.
Fecko, M. A. and Steinder, M. (2001). Combinatorial de-
signs in multiple faults localization for battlefield net-
works. In 2001 MILCOM Proceedings Communica-
tions for Network-Centric Operations: Creating the
Information Force (Cat. No.01CH37277), volume 2,
pages 938–942 vol.2.
Frank, P. (1996). Analytical and qualitative model-based
fault diagnosis : A survey and some new results. Eu-
ropean Journal of Control, 2(1):6 – 28.
Hood, C. S. and Ji, C. (1997). Proactive network-fault de-
tection. IEEE Transactions on Reliability, 46(3):333–
341.
Isermann, R. (1984). Process fault detection based on mod-
eling and estimation methods: A survey. Automatica,
20(4):387 – 404.
Kant, L., Chen, W., Lee, C.-W., Sethi, A., Natu, M., Luo,
L., and Shen, C. (2004). D-flash : Dynamic fault lo-
calization and self-healing for battlefield networks. In
Applied Soft Computing - ASC, pages 1–2.
Kant, L. A., Sethi, A. S., and Steinder, M. (2002). Fault
localization and self-healing mechanisms for fcs net-
Investigating Fault Localization Techniques from Other Disciplines for Software Engineering
275