can be considered as a generic representation, since it
can hold both categorical and numerical data and also
since it doesn’t significantly reduce speed when com-
paring with Bitmap representation. We believe the
work discussed in this paper would provide a ground
work for building a Bitmap based framework for Data
Mining algorithms in general.
REFERENCES
(1990). Poker hand data set. URL: https://archive.ics.uci.
edu/ml/datasets/Poker+Hand. Online; Accessed 16
March 2019.
(1990). Us census data (1990) data set. URL: https://archive.
ics.uci.edu/ml/datasets/US+Census+Data+(1990).
Online; Accessed 16 March 2019.
(1999). Kdd cup (1999). kdd cup 99 intrusion detec-
tion datasets. URL: http://kdd.ics.uci.edu/databases/
kddcup99/kddcup99.html. Online; Accessed 16
March 2019.
Agrawal, R. and Srikant, R. (1994). Fast algorithms for
mining association rules. In Proc. of 20th Intl. Conf.
on VLDB, pages 487–499.
Amado, N., Gama, J., and Silva, F. M. A. (2001). Par-
allel implementation of decision tree learning algo-
rithms. In Proceedings of the10th Portuguese Con-
ference on Artificial Intelligence on Progress in Arti-
ficial Intelligence, Knowledge Extraction, Multi-agent
Systems, Logic Programming and Constraint Solving,
EPIA ’01, pages 6–13, London, UK, UK. Springer-
Verlag.
Andrade, G., Viegas, F., Ramos, G. S., Almeida, J., Rocha,
L., Gonc¸alves, M., and Ferreira, R. (2013). Gpu-nb:
A fast cuda-based implementation of na
¨
ıve bayes. In
2013 25th International Symposium on Computer Ar-
chitecture and High Performance Computing, pages
168–175.
B
¨
ohm, C., Noll, R., Plant, C., Wackersreuther, B., and
Zherdin, A. (2009). Data Mining Using Graphics Pro-
cessing Units, pages 63–90. Springer Berlin Heidel-
berg, Berlin, Heidelberg.
Chee, C.-H., Jaafar, J., Aziz, I. A., Hasan, M. H., and Yeoh,
W. (2018). Algorithms for frequent itemset mining: a
literature review. Artificial Intelligence Review.
Chon, K.-W., Hwang, S.-H., and Kim, M.-S. (2018).
Gminer: A fast gpu-based frequent itemset mining
method for large-scale data. Information Sciences,
439-440:19 – 38.
Dua, D. and Graff, C. (2017). UCI machine learning repos-
itory.
Fang, W., Lau, K. K., Lu, M., Xiao, X., Lam, C. K., Yang,
P. Y., He, B., Luo, Q., S, P. V., and Yang, K. (2008).
Parallel data mining on graphics processors. Technical
report.
Fang, W., Lu, M., Xiao, X., He, B., and Luo, Q. (2009).
Frequent itemset mining on graphics processors. In
Proceedings of the Fifth International Workshop on
Data Management on New Hardware, DaMoN ’09,
pages 34–42, New York, NY, USA. ACM.
Favre, C. and Bentayeb, F. (2005). Bitmap index-based de-
cision trees. In Proceedings of the 15th International
Conference on Foundations of Intelligent Systems, IS-
MIS’05, pages 65–73, Berlin, Heidelberg. Springer-
Verlag.
Gainaru, A. and Slusanschi, E. (2011). Framework for map-
ping data mining applications on gpus. In 2011 10th
International Symposium on Parallel and Distributed
Computing, pages 71–78.
Harris, M. (2016). Optimizing parallel reduction in
cuda. URL: https://developer.download.nvidia.com/
assets/cuda/files/reduction.pdf. Online; Accessed 16-
Feb-2019.
Jian, L., Wang, C., Liu, Y., Liang, S., Yi, W., and Shi, Y.
(2013). Parallel data mining techniques on graphics
processing unit with compute unified device architec-
ture (cuda). J. Supercomput., 64(3):942–967.
Liao, Y., Rubinsteyn, A., Power, R., and Li, J. (2013).
Learning random forests on the gpu.
Mehta, M., Agrawal, R., and Rissanen, J. (1996). Sliq: A
fast scalable classifier for data mining. In Apers, P.,
Bouzeghoub, M., and Gardarin, G., editors, Advances
in Database Technology — EDBT ’96, pages 18–32,
Berlin, Heidelberg. Springer Berlin Heidelberg.
O’Neil, P. and Quass, D. (1997). Improved query per-
formance with variant indexes. In Proceedings of
the 1997 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’97, pages 38–49,
New York, NY, USA. ACM.
Shafer, J. C., Agrawal, R., and Mehta, M. (1996). Sprint:
A scalable parallel classifier for data mining. In Pro-
ceedings of the 22th International Conference on Very
Large Data Bases, VLDB ’96, pages 544–555, San
Francisco, CA, USA. Morgan Kaufmann Publishers
Inc.
Silvestri, C. and Orlando, S. (2012). gpudci: Exploiting
gpus in frequent itemset mining. In 2012 20th Euromi-
cro International Conference on Parallel, Distributed
and Network-based Processing, pages 416–425.
Sinha, R. R. and Winslett, M. (2007). Multi-resolution
bitmap indexes for scientific data. ACM Trans.
Database Syst., 32(3).
Witten, I. H., Frank, E., and Hall, M. A. (2011). Data
Mining: Practical Machine Learning Tools and Tech-
niques. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, 3rd edition.
DATA 2019 - 8th International Conference on Data Science, Technology and Applications
266