tational approach for complete Lyapunov functions.
In Dynamical Systems in Theoretical Perspective.
Springer Proceedings in Mathematics & Statistics. ed.
Awrejcewicz J. (eds)., volume 248.
Arg
´
aez, C., Giesl, P., and Hafstein, S. (2018c). Iterative
construction of complete Lyapunov functions. In Pro-
ceedings of the 8th International Conference on Sim-
ulation and Modeling Methodologies, Technologies
and Applications (SIMULTECH). Porto, Portugal.
Arg
´
aez, C., Giesl, P., and Hafstein, S. (2019a). Clustering
algorithm for generalized recurrences using complete
Lyapunov functions. ICCS 2019, Faro.
Arg
´
aez, C., Giesl, P., and Hafstein, S. (2019b). Improved
estimation of the chain-recurrent set. In IEEE Xplore
digital library. ACCEPTED. ECC 2019, Naples.
Arg
´
aez, C., Hafstein, S., and Giesl, P. (2017b). Wendland
functions a C++ code to compute them. In Proceed-
ings of the 7th International Conference on Simulation
and Modeling Methodologies, Technologies and Ap-
plications (SIMULTECH), pages 323–330. Madrid,
Spain.
Chen, H. and J. Shen, Z. Z. (2014). Existence and analytical
approximations of limit cycles in a three-dimensional
nonlinear autonomous feedback control system. J Syst
Sci Complex., 27:1158.
Conley, C. (1978). Isolated Invariant Sets and the Morse In-
dex. CBMS Regional Conference Series no. 38. Amer-
ican Mathematical Society.
Conley, C. (1988). The gradient structure of a flow I. Er-
godic Theory Dynam. Systems, 8:11–26.
Dellnitz, M. and Junge, O. (2002). Set oriented numeri-
cal methods for dynamical systems. In Handbook of
dynamical systems, Vol. 2, pages 221–264. North-
Holland, Amsterdam.
Hsu, C. S. (1987). Cell-to-cell mapping, volume 64 of Ap-
plied Mathematical Sciences. Springer-Verlag, New
York.
Hurley, M. (1995). Chain recurrence, semiflows, and gra-
dients. J Dyn Diff Equat, 7(3):437–456.
Hurley, M. (1998). Lyapunov functions and attractors in
arbitrary metric spaces. Proc. Amer. Math. Soc.,
126:245–256.
Iske, A. (1998). Perfect centre placement for radial basis
function methods. Technical Report TUM-M9809, TU
Munich, Germany.
Krauskopf, B., Osinga, H., Doedel, E. J., Henderson, M.,
Guckenheimer, J., Vladimirsky, A., Dellnitz, M., and
Junge, O. (2005). A survey of methods for computing
(un)stable manifolds of vector fields. Internat. J. Bifur.
Chaos Appl. Sci. Engrg., 15(3):763–791.
Lyapunov, A. M. (1907). Probl
`
eme g
´
en
´
eral de la stabilit
´
e
du mouvement. Ann. of math. Stud. 17. Princeton.
Ann. Fac. Sci. Toulouse 9, 203–474. Translation of
the russian version, published 1893 in Comm. Soc.
math. Kharkow. Newly printed: Ann. of math. Stud.
17, Princeton, 1949.
Lyapunov, A. M. (1992). The general problem of the sta-
bility of motion. Internat. J. Control, 55(3):521–790.
Translated by A. T. Fuller from
´
Edouard Davaux’s
French translation (1907) of the 1892 Russian orig-
inal.
P. Giesl C. Arg
´
aez, S. H. and Wendland, H. (2018).
Construction of a complete Lyapunov function using
quadratic programming. In Proceedings of the 15th
International Conference on Informatics in Control,
Automation and Robotics (ICINCO). SIMULTECH
2018, Porto.
Wendland, H. (1998). Error estimates for interpolation by
compactly supported Radial Basis Functions of mini-
mal degree. J. Approx. Theory, 93:258–272.
ICINCO 2019 - 16th International Conference on Informatics in Control, Automation and Robotics
146