cuting the analysis themselves.
The theoretical results will be accompanied by ap-
plication examples from the field of sports science.
Since most sports follow a rulebook, various kinds of
prior knowledge can be applied. Player policies can
be used to investigate vague prior knowledge.
ACKNOWLEDGEMENTS
This project (ZaVI FR 2620/3-1) is funded by the
German Research Foundation.
REFERENCES
Adamy, J. (2018). Nichtlineare Systeme und Regelungen.
Springer.
Angermann, M. and Robertson, P. (2012). FootSLAM:
Pedestrian simultaneous localization and mapping
without exteroceptive sensors;hitchhiking on human
perception and cognition. Proceedings of the IEEE,
100(Special Centennial Issue):1840–1848.
Battistello, G., Ulmke, M., Papi, F., Podt, M., and Boers,
Y. (2012). Assessment of vessel route information use
in bayesian non-linear filtering. In 2012 15th Interna-
tional Conference on Information Fusion, pages 447–
454.
Beauregard, S., Widyawan, and Klepal, M. (2008). Indoor
PDR performance enhancement using minimal map
information and particle filters. In 2008 IEEE/ION
Position, Location and Navigation Symposium, pages
141–147.
Dissanayake, G., Sukkarieh, S., Nebot, E., and Durrant-
Whyte, H. (2001). The aiding of a low-cost strap-
down inertial measurement unit using vehicle model
constraints for land vehicle applications. IEEE trans-
actions on robotics and automation, 17(5):731–747.
Foxlin, E. (2005). Pedestrian tracking with shoe-mounted
inertial sensors. IEEE Computer Graphics and Appli-
cations, 25(6):38–46.
Han, S. and Wang, J. (2008). Monitoring degree of ob-
servability in GPS/INS integration. In International
Symposium on GPS/GNSS.
Harle, R. (2013). A survey of indoor inertial positioning
systems for pedestrians. IEEE Communications Sur-
veys and Tutorials, 15(3):1281–1293.
Kou, S. R., Elliott, D. L., and Tarn, T. J. (1973). Observ-
ability of nonlinear systems. Information and Control,
22(1):89–99.
L
´
opez-Araquistain, J.,
´
Angel J. Jarama, Besada, J. A.,
de Miguel, G., and Casar, J. R. (2019). A new ap-
proach to map-assisted bayesian tracking filtering. In-
formation Fusion, 45:79 – 95.
Podt, M., Bootsveld, M., Boers, Y., and Papi, F. (2014).
Exploiting imprecise constraints in particle filtering
based target tracking. In Information Fusion (FU-
SION), 2014 17th International Conference on, pages
1–8. IEEE.
Rasool, G. (2018). Constrained state estimation-a review.
arXiv preprint arXiv:1807.03463.
Rehbinder, H. and Hu, X. (2004). Drift-free attitude es-
timation for accelerated rigid bodies. Automatica,
40(4):653 – 659.
Roetenberg, D., Luinge, H., and Slycke, P. (2009). Xsens
MVN: Full 6DOF human motion tracking using
miniature inertial sensors. Xsens Motion Technol. BV
Tech. Rep., 3.
Rothman, Y., Klein, I., and Filin, S. (2014). Analytical ob-
servability analysis of INS with vehicle constraints.
Navigation: Journal of The Institute of Navigation,
61(3):227–236.
Sabatini, A. M. (2006). Quaternion-based extended kalman
filter for determining orientation by inertial and mag-
netic sensing. IEEE Transactions on Biomedical En-
gineering, 53(7):1346–1356.
Simon, D. (2010). Kalman filtering with state constraints: a
survey of linear and nonlinear algorithms. IET Control
Theory & Applications, 4(8):1303–1318.
Tahk, M. and Speyer, J. L. (1990). Target tracking problems
subject to kinematic constraints. IEEE transactions on
automatic control, 35(3):324–326.
Vaganay, J., Aldon, M. J., and Fournier, A. (1993). Mobile
robot attitude estimation by fusion of inertial data. In
[1993] Proceedings IEEE International Conference
on Robotics and Automation, pages 277–282 vol.1.
Wenk, F. (2017). Inertial Motion Capturing Rigid Body
Pose and Posture Estimation with Inertial Sensors.
PhD thesis, University of Bremen.
Woodman, O. and Harle, R. (2008). Pedestrian localisation
for indoor environments. In Proceedings of the 10th
International Conference on Ubiquitous Computing,
UbiComp ’08, pages 114–123, New York, NY, USA.
ACM.
Xu, L., Liang, Y., Pan, Q., Duan, Z., and Zhou, G. (2016).
A kinematic model of route-based target tracking: Di-
rect discrete-time form. In 2016 19th International
Conference on Information Fusion (FUSION), pages
225–231.
ICINCO 2019 - 16th International Conference on Informatics in Control, Automation and Robotics
788