ACKNOWLEDGMENT
This work was partially funded by the European Com-
munity CEF-TC-2018-1 - Safer Internet (grant agree-
ment number INEA/CEF/ICT/A2018/1614254) CY-
berSafety II (http://www.cybersafety.cy/) project.
REFERENCES
Au, K. W. Y., Zhou, Y. F., Huang, Z., and Lie, D. (2012).
Pscout: analyzing the android permission specifica-
tion. In Proceedings of the 2012 ACM conference on
Computer and communications security, pages 217–
228. ACM.
Bao, L., Lo, D., Xia, X., and Li, S. (2016). What permis-
sions should this android app request? In 2016 In-
ternational Conference on Software Analysis, Testing
and Evolution (SATE), pages 36–41.
Chen, X. and Zhu, S. (2015). Droidjust: Automated
functionality-aware privacy leakage analysis for an-
droid applications. In Proceedings of the 8th ACM
Conference on Security & Privacy in Wireless and
Mobile Networks, WiSec ’15, pages 5:1–5:12, New
York, NY, USA. ACM.
Davi, L., Dmitrienko, A., Sadeghi, A.-R., and Winandy, M.
(2010). Privilege escalation attacks on android. In in-
ternational conference on Information security, pages
346–360. Springer.
Felt, A. P., Chin, E., Hanna, S., Song, D., and Wagner, D.
(2011a). Android permissions demystified. In Pro-
ceedings of the 18th ACM Conference on Computer
and Communications Security, CCS ’11, pages 627–
638, New York, NY, USA. ACM.
Felt, A. P., Greenwood, K., and Wagner, D. (2011b). The
effectiveness of application permissions. In Proceed-
ings of the 2Nd USENIX Conference on Web Applica-
tion Development, WebApps’11, pages 7–7, Berkeley,
CA, USA. USENIX Association.
Geneiatakis, D., Fovino, I. N., Kounelis, I., and Stir-
paro, P. (2015). A permission verification approach
for android mobile applications. Comput. Secur.,
49(C):192–205.
Gilbert, H. and Handschuh, H. (2003). Security analysis
of sha-256 and sisters. In International workshop
on selected areas in cryptography, pages 175–193.
Springer.
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann,
P., and Witten, I. H. (2009). The weka data min-
ing software: an update. ACM SIGKDD explorations
newsletter, 11(1):10–18.
Henderson, A., Prakash, A., Yan, L. K., Hu, X., Wang, X.,
Zhou, R., and Yin, H. (2014). Make it work, make it
right, make it fast: Building a platform-neutral whole-
system dynamic binary analysis platform. In Proceed-
ings of the 2014 International Symposium on Software
Testing and Analysis, ISSTA 2014, pages 248–258,
New York, NY, USA. ACM.
Idrees, F., Rajarajan, M., Conti, M., Chen, T. M., and
Rahulamathavan, Y. (2017). Pindroid: A novel an-
droid malware detection system using ensemble learn-
ing methods. Computers & Security, 68:36 – 46.
Jing, Y., Ahn, G. J., Zhao, Z., and Hu, H. (2015). Towards
automated risk assessment and mitigation of mobile
applications. IEEE Transactions on Dependable and
Secure Computing, 12(5):571–584.
Karim, M. Y., Kagdi, H., and Penta, M. D. (2016). Min-
ing android apps to recommend permissions. In 2016
IEEE 23rd International Conference on Software
Analysis, Evolution, and Reengineering (SANER),
volume 1, pages 427–437.
Kornblum, J. (2006). Identifying almost identical files us-
ing context triggered piecewise hashing. Digital in-
vestigation, 3:91–97.
Leontiadis, I., Efstratiou, C., Picone, M., and Mascolo, C.
(2012). Don’t kill my ads!: Balancing privacy in an
ad-supported mobile application market. In Proceed-
ings of the Twelfth Workshop on Mobile Computing
Systems & Applications, HotMobile ’12, pages
2:1–2:6, New York, NY, USA. ACM.
Li, L., Bissyand
´
e, T. F., Klein, J., and Traon, Y. L. (2016).
An investigation into the use of common libraries in
android apps. In 2016 IEEE 23rd International Con-
ference on Software Analysis, Evolution, and Reengi-
neering (SANER), volume 1, pages 403–414.
Li, L., Bissyand, T. F., Papadakis, M., Rasthofer, S., Bartel,
A., Octeau, D., Klein, J., and Traon, L. (2017). Static
analysis of android apps: A systematic literature re-
view. Information and Software Technology, 88:67 –
95.
Lindorfer, M., Neugschwandtner, M., and Platzer, C.
(2015). Marvin: Efficient and comprehensive mobile
app classification through static and dynamic analy-
sis. In Computer Software and Applications Confer-
ence (COMPSAC), 2015 IEEE 39th Annual, volume 2,
pages 422–433. IEEE.
Lopez, C. C. U. and Cadavid, A. N. (2016). Machine learn-
ing classifiers for android malware analysis. In Com-
munications and Computing (COLCOM), 2016 IEEE
Colombian Conference on, pages 1–6. IEEE.
Ma, Z., Wang, H., Guo, Y., and Chen, X. (2016). Libradar:
fast and accurate detection of third-party libraries in
android apps. In Proceedings of the 38th Interna-
tional Conference on Software Engineering Compan-
ion, pages 653–656. ACM.
Mann, C. and Starostin, A. (2012). A framework for static
detection of privacy leaks in android applications. In
Proceedings of the 27th annual ACM symposium on
applied computing, pages 1457–1462. ACM.
Merlo, A. and Georgiu, G. C. (2017). Riskindroid: Machine
learning-based risk analysis on android. In IFIP In-
ternational Conference on ICT Systems Security and
Privacy Protection, pages 538–552. Springer.
Micinski, K., Votipka, D., Stevens, R., Kofinas, N.,
Mazurek, M. L., and Foster, J. S. (2017). User in-
teractions and permission use on android. In Proceed-
ings of the 2017 CHI Conference on Human Factors
in Computing Systems, CHI ’17, pages 362–373, New
York, NY, USA. ACM.
WEBIST 2019 - 15th International Conference on Web Information Systems and Technologies
44