
Semi-Structured Data Model for Big Data (SS-DMBD)

Shady Hamouda1,2 and Zurinahni Zainol1
1Universiti Sains Malaysia, Penang, Malaysia

2Emirates College of Technology, Abu Dhabi, U.A.E.

Keywords: Semi-Structured Data, Document-oriented Database, Big Data, NoSQL.

Abstract: New business applications require flexibility in data model structure and must support the next generation of

web applications and handle complex data types. The performance of processing structured data through a

relational database has become incompatible with big data challenges. Nowadays, there is a need to deal

with semi-structured data with a flexible schema for different applications. Not only SQL (NoSQL) has

been presented to overcome the limitations of relational databases in terms of scale, performance, data

model, and distribution system. Also, NoSQL supports semi-structured data and can handle a huge amount

of data and provide flexibility in the data schema. But the data models of NoSQL systems are very complex,

as there are no tools available to represent a scheme for NoSQL databases. In addition, there is no standard

schema for data modelling of document-oriented databases. This study proposes a semi-structured data

model for big data (SS-DMBD) that is compatible with a document-oriented database, and also proposes an

algorithm for mapping the entity relationship (ER) model to SS-DMBD. A case study is used to evaluate the

SS-DMBD and its features. The results show that this model can address most features of semi-structured

data.

1 INTRODUCTION

Nowadays, business applications require databases

with the ability to support extreme scales and deal

with many data formats. Information technology in

the healthcare sector is shifting from structure-based

data to semi-structured (Wang et al., 2018). Assunção

et al. (2015) and Stanescu et al. (2016) discussed the

challenges of big data, such as how to deal with

increasing data volume and the need for a semi-

structured data type to store and handle large amounts

of data with a flexible schema.

Assunção et al. (2015) and Siddiqa et al. (2017)

discussed the problems of relational databases, which

are a challenge in big data handling: how to process

and integrate variety and velocity data. Therefore, the

Not only SQL (NoSQL) database has been presented

as new technology for designing a data model without

strict constraints (Wang et al., 2018). NoSQL is

capable of accepting all types of structured, semi-

structured, and unstructured data and has many

features such as a support-distributed system, a

flexible schema, and horizontal, scalable, and easy

replication (Storey and Song, 2017; Quattrone et al.,

2016). Moreover, NoSQL has a different data model

concept that is classified according to the storage and

retrieval of data, as each model has different ways of

designing, storing, and processing data (Storey and

Song, 2017). A document-oriented database is

designed to manage and store data in document

format and collections. A document’s contents are

encapsulated or encoded in a standard format such as

extensible markup language (XML), JavaScript

Object Notation (JSON), or Binary JavaScript Object

Notation (BJSON) for storing and retrieving the data

(Li et al., 2014). Each document has a unique primary

key. Also, a document can include different data

types, such as complex data structure, nested objects,

arrays, and embedded documents (Zhao et al., 2013).

On the other hand, semi-structured data is

emerging as one of the best models for handling large

amounts of data. Hashem and Ranc (2016) noted that

NoSQL distribution supports a schema that will give

flexibility in handling and processing semi-structured

data.

A semi-structured data format can store data in

XML, JSON, or BJSON. Moreover, a document-

oriented database stores data in a semi-structured

format using the key-value concept. The value of a

key can be any data type that gives the database

flexibility to store any kind of data (Zhao et al.,

2013).

348
Hamouda, S. and Zainol, Z.
Semi-Structured Data Model for Big Data (SS-DMBD).
DOI: 10.5220/0007957603480356
In Proceedings of the 8th International Conference on Data Science, Technology and Applications (DATA 2019), pages 348-356
ISBN: 978-989-758-377-3
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

However, there is a lack of semi-structured data

models with flexible schemas (Assunção et al.,

2015, Mazumdar et al., 2019). These issues and

challenges must be addressed by researchers when

designing a method or algorithm to retrieve

information from a large amount of data (Storey and

Song, 2017). Therefore, this study focuses on the

design of a semi-structured data model for big data.

The remainder of this paper is structured as

follows: the next section reviews existing semi-

structured data models; it is followed by the

proposed model and algorithm, and presentation of

the case study. Finally, the proposed model is

evaluated and conclusions are drawn.

2 MODELS OF

SEMI-STRUCTURED DATA

A semi-structured data model is used to store

different types of data without a formal structure

(Strohbach et al., 2016). Numerous properties must

be addressed to handle semi-structured data, such as

no strict structure, no strict participation/instances,

hierarchical structure, non-hierarchical structure,

ordering, irregular structure of data, disjunction,

self-evolving, mixed content, abstraction, explicit

separation of structure and content, partial

relationship/participation, heterogeneity, n-array

relationships, inheritance, reuse potential,

constraints, functional dependencies, symmetric

relationships, and recursive relationships (Ganguly

and Sarkar, 2012). These properties are evaluated in

terms of semi-structured data models in Table 1.

Ganguly and Sarkar (2012) found that none of

these models can address all of the properties and

requirements of the semi-structured data model. The

GOOSSDM model can handle most semi-structured

requirements, but the integration of semantic web

technologies is still problematic with all of these

models.

Hashem and Ranc (2016) and Yusof and Man

(2017) found that JSON is more compact than XML

for semi-structured data because XML has many

rules and great complexity in representing a semi-

structured data format. JSON is a serialization

format, which has schema-less data with many data

types, such as string, number, list and array, and

nested structure (Florescu and Fourny, 2013). The

features of JSON include easy preparation, string

array analysis, and suitability for semi-structured

data and a cloud database (Mathew and Kumar,

2015). Therefore, JSON plays an important role in

representing semi-structured data in a NoSQL

database, as it is lightweight and flexible in dealing

with formatted, semi-structured data (Storey and

Song, 2017).

Table 1: Evaluation of the semantic properties of semi-structured conceptual models (Ganguly and Sarkar, 2012).

 Model

 Property
ERX

ORA-

SS
XER EReX XUML XSEM GOOSSDM

No strict structure -

No strict participation/instances -

Hierarchical structure

Non-hierarchical structure P X P

Ordering P

Irregular structure of data X X

Disjunction X X

Self-evolving X X

Mixed content X

Abstraction X

Explicit separation of structure and content

Partial relationship/participation

Heterogeneous

N-array relationship

Inheritance

Reuse potential

Constraints

Cardinality

ERX:Entity relational for XML;ORA-SS:object relationship attribute model for semi-structured data; XER:Extensible ER;

EReX:Entity relational extended to XML;XUML:Executable of Unified Modeling Language;XSEM:Conceptual model for

XML;GOOSSDM:Graph object-oriented semi-structured data model; =fully supported; X = not fully supported;

P=partially supported.

T
ri

ll
io

n
s

o
f

G
ig

ab
y

te
s

(Z
et

ta
b

y
te

s)

Semi-Structured Data Model for Big Data (SS-DMBD)

349

3 PROPOSAL: A

SEMI-STRUCTURED DATA

MODEL FOR BIG DATA

This study proposes a schema for a semi-structured

data model for big data (SS-DMBD) based on the

document-oriented data model. This schema is

focused on organizing data into semantic collections.

Some entities can be grouped into other collections,

and documents in the same collection may not have

the same fields. The order of the fields is not

necessary, and the content of a particular field may

differ across documents. The SS-DMBD transforms

the conceptual model to a logical model based on the

following features of the entity relationship ER

model: identifying all entities and attributes,

identifying the relationships between entities,

resolving all types of relationships, keys (primary,

foreign), constraint, and normalization.

3.1 SS-DMBD Components

Many components are required in designing a

database based on the data model, to contain the

logical and physical data model. This section

describes the main components in designing an SS-

DMBD:

i. Each strong entity is represented by a collection;

ii. Each weak entity is represented by an embedded

document in the strong collection;

iii. Each entity record represents a document;

iv. Each attribute is represented by key-value pairs

in which the key represents the attribute and the

value the data type of this attribute according to

the type of value;

v. The array data type is used to represent multiple

values or many documents; and

vi. Embedded and reference documents represent

the types of relationships between the

collections.

3.2 Features of SS-DMBD

The features of the ER model are used to outline a

database schema model. The SS-DMBD improves

upon the document-oriented schema of Bhogal and

Choksi) 2015 as follows.

3.2.1 Entities

The SS-DMBD database entities include:

Strong entities: A strong entity is a collection of

documents represented by a folded corner shape

with the entity name written on it.

Weak entities: A weak entity is a document

embedded in the strong entity, represented by a

folded corner inside the strong entity with the name

of the weak entity.

Hierarchical entities: A document is created for each

higher level entity with all of its attributes as key

values; then, the lower level entities with their

attributes are added as an array of documents

embedded in the high-level document.

3.2.2 Constraints

The document constraints are the following:

The primary key of the relational schema for each

entity is the same for this model. It uniquely

identifies each document. The primary key for the

document is identified by underlining the relevant

attribute.

A foreign key is indicated by adding the primary

key of the entity to another entity. The foreign key is

represented by a dashed underline of the relevant

attribute.

3.2.3 Relationships

The relationships of the document-oriented model

based on SS-DMBD are represented as follows:

i. One-to-One (1:1) Relationship: This can be

handled in two ways: using an embedded document

or using the reference document. If one side of the

relationship has datasets not exceeding 16 MB or

has less than tens of thousands/hundreds of

thousands/millions records, and there are no

relationships with other entities, then an embedded

document is used to handle this relationship. If more

relationships exist or both sides have datasets

including more than tens of thousands/hundreds of

thousands/millions of records, then this relationship

should be represented using the reference document.

The embedded document is represented by a

folded upper right corner and is marked with the

type of relationship.

The reference document is used to represent the

relationships between two collections and is

described by a line between them.

ii. 1:N Relationship: This relationship can be

described using the embedded document or

reference document depending on the size of

datasets for the N side. If N is small (i.e., less than

tens of thousands/hundreds of thousands/millions

records, based on the assumption that documents are

not large), the upper left corner of the embedded

DATA 2019 - 8th International Conference on Data Science, Technology and Applications

350

document is folded and marked with the type of the

relationship. If N is large (i.e., more than tens of

thousands/hundreds of thousands/millions of

records), then the relationship is described by the

reference document.

iii. M:M Relationship: This type of relationship can

be handled by creating two collections, then storing

a list of related documents with links to the other

collections as a list of array elements in other

documents and vice versa. It is represented using an

array of data type with the embedded documents.

Square brackets [] are used to identify the array, and

each element of the array is a document stored in the

field “relationship name or combination of both

collections’ names.”

iv. Unary Relationship: A unary relationship is

described by normal key-value pairs in the

samedocument, and K is the name of the unary

relationship.

4 MAPPING ER SCHEMA TO

SS-DMBD

The components of ER schemas are entities,

attributes, and relationships. SS-DMBD uses E to

represent an entity, and a series of entities will be

Ei….En (i=1 to n). The number of attributes will be

represented by Aj….An (j=1 to n), and R is used to

represent the type of relationships (1:1 or 1:N or

M:M).

4.1 SS-DMBD Specifications

ER specifications are converted to the SS-DMBD

specifications as shown in Table 2.

Table 2: Specifications of SS-DMBD.

Database properties ER model SS-DMBD notion Description

Entity (E)

Strong entity C Create a new collection

Weak entity WC Embed weak entity into a strong collection

Hierarchical

entities

 HC{LC1,…,LCi}

HC: Higher collection

LC: lower collection

i: number of lower

collections

Create a document for all higher level entities with all the

attributes as key values. Add the lower level entities with their

attributes as an array of embedded documents for the high-

level document. HC{k1..kn, LC[{k1..kij}]……}

Attribute

Attributes {K1,…,Ki}
The attributes of each entity are described using K; they are

listed in brackets as documents separated by commas.

Multi-valued

attribute
MV[K1,…,Ki]

The multi-valued attribute is described by the name of this

attribute with an array data type, and Vi represents all of the

multi-values.

Relationships
Relationship

types

Em The embedded model applies between two entities.

Rf The reference model applies between two entities.

Algorithm for mapping the ER schema to SS-DMBD

Input: ER schema

Output: SS-DMBD

1: BEGIN.

2: for each strong entity

3: create new collection C i(i=1…n).

4: for each weak entity WCi(i=1…n) do

5: create embedded documents belonging in the strong entity (WCi Em ⊆ Ci).

6: end for.

7: for each multi-value attribute “MVi” do

8: store multi-values as array data type belonging in the strong entity ∀ MVi(i=1…n) []⊆ Entity.

9: end for.

10: for each 1:1 relationship between two entities (Entity1 and Entity2) do

11: If Entity1 data set size is less than 16 MB or it has less than tens of thousands/hundreds of thousands/millions of

records and no other relationship with other entity.

12: Entity1 store as an embedded document into Entity2 (Entity 1 Em ⊆ Entity 2).

13: else

Semi-Structured Data Model for Big Data (SS-DMBD)

351

14: apply reference document between Entity 1 and Entity 2 (Entity 1 Rf ⊆ Entity 2).

15: end if.

16: end for.

17: for each 1:N relationship between two entities (Entity 1 and Entity 2) do

18: if N data set size is less than 16 MB or it has less than tens of thousands/hundreds of thousands/millions of records

then

19: N side store as an embedded document into 1 side (Entity2(N) Entity m ⊆ E Entity1(1)).

20: else

21: apply reference document between Entity1 and Entity2 (Entity 1 Rf ⊆ Entity2)

22: end if.

23: end for.

24: for each M:M relationship between two entities (Entity1 and Entity2) do

25: for Entity1 side do

26: create array data type into an embedded document

store the primary key of Entity2 with other related attributes.

27: Update Entity1 with the embedded document of Entity2 (Entity2 :{[Em]} ⊆ Entity1).

28: end for.

29: for E2 do

30: create array data type in an embedded document

31: store the primary key of Entity1 with other related attributes.

32: update Entity2 with the embedded document of Entity1 (Entity1 :{[Em]} ⊆ Entity2).

33: end for.

34: end.

Figure 1: Airbnb schema in relational database (https://creately.com/app/?tempID=idbbu9op2#).

5 CASE STUDY: AIRBNB, INC.

Airbnb, Inc. is one of the most effective travel

accommodation and apartment-providing services

worldwide. According to Quattrone et al., (2016),

Airbnb need to changing their business requirements

from time to time.

5.1 Airbnb Schema in Relational
Database

Figure 1 presents a schema for the large company

Airbnb in a relational database.

DATA 2019 - 8th International Conference on Data Science, Technology and Applications

352

5.2 Airbnb Schema by SS-DMBD

A mapping algorithm was applied to map the Airbnb

schema from the relational database to SS-DMBD;

the output is shown in Figure 2.

Figure 2: Airbnb schema by a semi-structured data model

for big data (SS-DMBD).

6 EVALUATION OF SS-DMBD

FEATURES WITH

SEMI-STRUCTURED

PROPERTIES

SS-DMBD covers most semantic features of semi-

structured data, as follows.

6.1 No Strict Structure

SS-DMBD has no strict formatting, which indicates

that similar attributes in each document are

irrelevant and new attributes can be added at any

time without any strict structure.

6.2 Hierarchical Structure

SS-DMBD can support tree data structures of

hierarchical relationships. The concept of

embedding a document into a collection considers

the hierarchical structure between two collections,

and each collection may have many embedded

documents.

6.3 Non-hierarchical Structure

The document of parent references stores each tree

node, and each tree node stores the ID of a reference

document. Thus, each collection may include many

references to other collections with no hierarchical

structure.

6.4 Ordering

The concept of the document-oriented database

model is a free schema—that is, the order of key

values in the document depends on how they are

inserted. Each document may have a different

ordering of fields.

6.5 Irregular Data Structure

SS-DMBD stores data in a semi-structured format

that is, data are stored as key values. The value of

the key can be any type of data, and pairs of key

values are stored in documents. Given that each

document has a flexible schema; data can be stored

in an irregular structure.

6.6 Disjunction

Disjunction is represented by an embedded

document. The main document ID is associated with

Semi-Structured Data Model for Big Data (SS-DMBD)

353

the embedded document’s ID, and the embedded ID

can access all the embedded fields.

6.7 Self-evolution

Self-evolution considers as the main concept of the

documents oriented model of because it does not have

a fixed schema. Therefore, each document has a self-

description, which allows each key to be self-

described.

6.8 Mixed Content

SS-DMBD allows each key to have different contents

in each document, and these contents can be blended

in the same document without a structure. The

concept of key values is to accept any kind of data

without constraint and without defining the type of

key, because the constraint of value will be

responsible for the application.

6.9 Abstraction

SS-DMBD hides the complexity of data. Given that

the content in each key is not important, a key can be

accessed without any details about the value type.

6.10 Explicit Separation of Structure and

Content

The logical structure of documents is represented in a

separate hierarchy by considering the content of the

key-value series.

6.11 Partial Relationship/Participation

In the data model of a document, a relationship can be

represented using reference and embedded documents

to identify the parent and child of each document. The

main collection includes the parent and embedded

documents (which are considered the children). The

reference model between collections represents

participation.

6.12 N-array Relationship

SS-DMBD represents the many-to-many relationship

and multi-value attributes in array values and makes

better use of this feature than previous models did.

Embedded and reference documents represent many-

to-many relationships.

6.13 Inheritance

SS-DMBD supports inheritance through the

embedded document. The main document can

describe the common properties, and the embedded

document can be represented by the sub-properties of

the main document data. Therefore, SS-DMBD can

describe inheritance.

6.14 Reuse Potential

The reference linking of the relationship between two

documents describes the reuse potential. For example,

the relationship between collections can be

represented by a reference document. Thus, SS-

DMBD can connect the collection with other

collections through the reference concept.

6.15 Constraints

SS-DMBD is a flexible schema, meaning it has no

constraints when dealing with different data types or

when documents may have different fields depending

on the system. Moreover, if a constraint needs to be

applied, it will be implemented by a programming

application.

6.16 Cardinality

An embedded document can represent the

relationships between the document and collections.

The reference document can represent the

relationships between the collections. SS-DMBD

supports cardinality features, such as the relational

database that keeps relationships between tables

through embedded and reference documents.

6.17 Functional Dependencies

The data are organized into key values. Each key is

used to store a value, which can be determined by the

key. Each document also has a primary key, which is

used to identify all document keys. Therefore, all

document fields are functionally dependent on the

primary key document.

6.18 Symmetric Relationship

Each value in the document can be related to the key,

and each key is symmetrically related to the value.

6.19 Recursive Relationship

This feature can be described through the

DATA 2019 - 8th International Conference on Data Science, Technology and Applications

354

relationships between documents. A unary

relationship is stored in the related collection, which

can be described as a recursive relationship.

6.20 Flexible Schema

This new feature is required for big data not covered

by any semi-structured models or a relational

database, and for new business requirements and

changes. In SS-DMBD, the schema can be changed

at any time. SS-DMBD allows adding any field in

any document without constraint and allows each

document to have different numbers of fields. It also

allows changing the relationships before or after

implementation.

6.21 Time Stamp

This feature is required for semi-structured data.

Real-time applications need a way to evolve with

time. Time-stamp data type can be better and more

efficient than date-time data type. SS-DMBD

provides time-stamp data for each document that it

supports.

To summarize, in a relational database, a new

field should be added to change its schema, but the

empty field will cause inefficiencies in performance.

SS-DMBD addresses this issue by allowing adding

or altering data in any structure without changing the

database schema. SS-DMBD allows the application

to use the required data and ignore unrequired data.

The flexible schema and time stamp are fully

supported by SS-DMBD, unlike previous semi-

structured models.

7 CONCLUSION

A semi-structured data model was designed to be

compatible with a document-oriented database.

Also, an algorithm was proposed to map the ER

model to SS-DMBD. This algorithm can be used to

convert any relational database schema to a

document-oriented database schema. Furthermore,

semi-structured data can be formatted in a document

in a way that is more useful than a table when a

large amount of data is available. The proposed

model provides features for the conceptual

representation of a document-oriented database. For

example, it presents a flexible schema by allowing

the application to change or update business

requirements over time, it allows collecting data of

different types from different sources, and it

represents relationships as embedded and reference

documents. The study can be extended to migrate a

relational database to a document-oriented database.

REFERENCES

Assunção, M. D., Calheiros, R. N., Bianchi, S., Netto, M.

A. & Buyya, R. 2015. Big Data Computing and

Clouds: Trends and Future Directions. Journal of

Parallel and Distributed Computing, 79, 3-15.

Bhogal, J. & Choksi, I. Handling Big Data Using NoSQL.

Advanced Information Networking and Applications

Workshops (WAINA), 2015 IEEE 29th International

Conference On, 2015. IEEE, 393-398.

Feng, W., Gu, P., Zhang, C. & Zhou, K. Transforming

UML Class Diagram Into Cassandra Data Model With

Annotations. 2015 IEEE International Conference on

Smart City/Socialcom/Sustaincom (SmartCity), 2015.

IEEE, 798-805.

Florescu, D. & Fourny, G. 2013. JSONiq: The History of a

Query Language. IEEE Internet Computing, 17, 86-

90.

Ganguly, R. & Sarkar, A. 2012. Evaluations of Conceptual

Models for Semi-Structured Database System.

International Journal of Computer Applications, 50.

Hashem, H. & Ranc, D. Evaluating NoSQL Document

Oriented Data Model. Future Internet of Things and

Cloud Workshops (FiCloudW), IEEE International

Conference on, 2016. IEEE, 51-56.

Li, X., Ma, Z. & Chen, H. QODM: A Query-Oriented

Data Modeling Approach for NoSQL Databases.

Advanced Research and Technology in Industry

Applications (WARTIA), 2014 IEEE Workshop on,

2014. IEEE, 338-345.

Mathew, A. B. & Kumar, S. M. Analysis of Data

Management and Query Handling in Social Networks

using NoSQL Databases. Advances in Computing,

Communications and Informatics (ICACCI), 2015

International Conference on, 2015. IEEE, 800-806.

Mazumdar, S., Seybold, D., Kritikos, K. & Verginadis, Y.

2019. A Survey on Data Storage and Placement

Methodologies for Cloud-Big Data Ecosystem.

Journal of Big Data, 6, 15.

Quattrone, G., Proserpio, D., Quercia, D., Capra, L. &

Musolesi, M. Who Benefits From The Sharing

Economy of Airbnb? Proceedings of the 25th

International Conference on World Wide Web, 2016.

International World Wide Web Conferences Steering

Committee, 1385-1394.

Siddiqa, A., Karim, A. & Gani, A. 2017. Big Data Storage

Technologies: A Survey. Frontiers of Information

Technology & Electronic Engineering, 18, 1040-1070.

Stanescu, L., Brezovan, M. & Burdescu, D. D. Automatic

Mapping of MySQL Databases to NoSQL MongoDB.

Computer Science and Information Systems

(FedCSIS), 2016 Federated Conference on, 2016.

IEEE, 837-840.

Storey, V. C. & Song, I.-Y. 2017. Big Data Technologies

and Management: What Conceptual Modeling Can

Semi-Structured Data Model for Big Data (SS-DMBD)

355

Do. Data & Knowledge Engineering, 108, 50-67.

Strohbach, M., Daubert, J., Ravkin, H. & Lischka, M.

2016. Big Data Storage. New Horizons for a Data-

driven Economy. Springer, Cham.

Wang, Y., Kung, L. & Byrd, T. A. 2018. Big Data

Analytics: Understanding its Capabilities and Potential

Benefits for Healthcare Organizations. Technological

Forecasting and Social Change, 126, 3-13.

Yusof, M. K. & Man, M. 2017. Efficiency of JSON for

Data Retrieval in Big Data. Indonesian Journal of

Electrical Engineering and Computer Science, 7, 250-

262.

Zhao, G., Huang, W., Liang, S. & Tang, Y. Modeling

Mongodb with Relational Model. Emerging Intelligent

Data and Web Technologies (EIDWT), 2013 Fourth

International Conference on, 2013. IEEE, 115-121.

DATA 2019 - 8th International Conference on Data Science, Technology and Applications

356

