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Abstract: In recent years, Internet of things (IoT) technologies that are used to collect various data have advanced 
significantly. In such networks, devices communicate with each other to exchange data. It is efficient for 
group-encrypted communication in IoT networks when devices in a group communicate with a common 
group key. However, if one device in the group is analyzed by an attacker, the group key is leaked. Therefore, 
a group key-sharing scheme that can change the group composition including a device deletion is required. 
Hamasaki et al. proposed a group key-sharing scheme using geometric characteristic. In this scheme, each 
device stores only the unique key and the key generates the coordinates for key sharing. The group 
composition can be changed easily using this scheme. However, the scheme incurs considerable computation 
cost when a large number of devices exist in the group. Therefore, we propose an efficient scheme that 
improves on Hamasaki et al.’s scheme for group key sharing and compare it with other methods. 

1 INTRODUCTION 

In recent years, Internet of things (IoT) has become 
fundamental for advancing businesses including e-
business. In IoT networks, many devices (nodes) 
collect various data and send them to a base station 
for analysis. Generally, an IoT network comprises a 
base station (BS) and many nodes. A single BS is 
included in every network and serves as the center of 
the network. Many nodes are present in the network 
and they collect environmental data. A BS must be 
tamper resistant and include sufficient computational 
ability and power supply capacity because if the BS 
malfunctions, the network will be affected. Nodes are 
placed in physically unsafe places, and the number of 
nodes can be large in the network. Therefore, nodes 
are not tamper-resistant and CPU performance is 
poor, because the cost to nodes is minimized. 

Communications in the IoT network include 
unicast, group, and broadcast communications. 
Unicast communication involves one-to-one device 
communication. Group communication involves 
three or more nodes. Broadcast communication 
involves all nodes in the network. Broadcast 
communication is considered as group 
communication because “all nodes in the network” 
are one of the groups in the network. 

It is necessary to encrypt all communications in an 
IoT network to ensure a secure communication. The 

following factors highlight the importance of 
encrypted communication in IoT networks because 
the node performance can be poor, and efficient key 
sharing is critical for establishing encrypted 
communication in IoT networks: 

• Low communication cost 

Communication cost must be low because of the 
considerable electric power required for 
communication, and each node has limited 
power storage. 

• Low computational cost 

Large computational costs involving complex 
calculations such as the public key cryptosystem 
may not be suitable for IoT networks because of 
poor CPU performance of nodes. 

• Low storage requirement 

It is possible to share keys using many pre-
distributed element keys without using a unique 
key for each node. However, node storage 
requirements are expected to be low because 
memory storage for most nodes is low. 

• Key renewal 

Encrypted communication using group keys for 
every communication group is efficient in IoT 
networks. However, it is desirable to renew a 
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group key easily because if the same group key 
is used continuously, all communication leaks 
when an attacker analyzes a device, and the key 
can be leaked as well. 

• Security 

It is important to ensure that an attacker analysis 
performed for one node does not leak the keys 
of other nodes. 

Hamasaki et al. proposed a geometric method in 
which a group key is shared using the unique key of 
each node. In this scheme, node coordinates are 
generated based on the unique key of a node, and the 
center coordinate is calculated, which is equally 
distant from all node coordinates. The BS broadcasts 
the center coordinate to all nodes, and the distance 
between the center coordinate and every node 
coordinate is used as the group key. The method uses 
characters of circles and spheres where the center 
coordinate is equally distant from the circumferences 
of a circle and a sphere. The method realizes an 
efficient key renewal process. We evaluated this 
method based on the five factors defined above. The 
evaluation demonstrated good results except for 
computational cost when the number of nodes in a 
group is large. This can be attributed to the 
calculation of multidimensional coordinates 
according to the number of nodes. For example, a 
999-times calculation for multidimensional 
coordinates is required when 1,000 nodes exist in the 
network. 

 

Figure 1: Central point of a circle. 

Therefore, we propose an efficient scheme for 
group key sharing, in which the group is divided into 
clusters of three nodes each. 

The related works are presented in Section 2. 
Section 3 provides a detailed description of the 
proposed scheme. Section 4 presents an evaluation of 
the proposed scheme, and Section 5 summarizes the 
conclusions of the paper. 

2 RELATED WORKS 

2.1 LEAP  

The Localized encryption and authentication protocol 
(LEAP) was introduced to maintain secure key 
establishment by providing four keys per each node: 
individual key, group key, cluster key, and pairwise 
key. This scheme is based on a common key 
cryptosystem. 

The individual key is shared with the BS, the 
group key with all nodes in the network globally, the 
cluster key with all the neighbor nodes jointly, the 
pairwise key with the direct neighbor nodes 
individually. In terms of LEAP, a cluster key is a key 
used for group communication, whereas a group key 
is a key used for broadcasting. Concept of the cluster 
key-sharing scheme used in LEAP is explained in 
detail in the subsequent paragraphs. 

The pairwise key sharing is required to be 
established first; it is then followed by the cluster key 
sharing phase. The pairwise key is generated by 
exchanging IDs between each neighbor nodes and 
encrypting these IDs using the initial keys set in all 
nodes. The individual key is deleted after pairwise 
key-sharing phase is completed. 

The cluster key-sharing process is established in a 
rather straightforward way. Let us consider the case 
where a node u attempts to establish a cluster key with 
all immediate neighbors v1, v2, …, vm. The node u 
first generates a random key Kcu as a group key, and 
subsequently encrypts this key with the pairwise key 
shared with each neighbor individually, followed by 
transmitting the encrypted key to each neighbor vi (i 
= 1, …, m). Therefore, the node u sends the encrypted 
key and the node ID vi to identify the addressee node. 
The node vi decrypts the group key Kcu and 
subsequently stores it. When one of the neighbors is 
revoked or added, the node u generates a new cluster 
key and transmits it to all the neighbors similarly. 

2.2 ECCKSS  

The ECC-based key-sharing scheme (ECCKSS) 
protocol is based on the elliptic curve cryptography 
(ECC) operation, namely, based on public key 
cryptosystems. This protocol consists of an initiator 
that wishes to share a group key and a responder that 
is a multicast group member. First, we present the 
steps of the initiator for sharing the group key. 

1. The initiator decides the composition of the 
multicast group U = {U1,U2,U3,…,U4}. 
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2. The initiator generates a random value r and 
computes R = rG (G is the base point generator 
with an order of p, which is a prime used in the 
elliptic curve (EC) parameters). The same R 
value can be reused. 

3. The initiator calculates the EC points Sjs (j = 1 
to n-1) using r and the public keys Qj of the 
group members: Sj = djQj + R, where dj is its 
private key. 

4. The initiator encodes the EC point Sj = (xj,yj) 
into the point (uj,vj) as follows: uj = h(xj); vj = 
h(yj). 

5. The initiator computes the values u఩ഥ ={⊕୧ஷ୨ u୧} ⊕ v୨ , ∀j ∈ {1,… , n- 1}  and denotes 
the set P = (uതଵ||…uത୬ିଵ). 

6. The initiator calculates the group key as k = h(⊕୧ u୧). 
7. The initiator calculates the Auth code as 

follows: Auth = h(k||R||P). 
8. The initiator transmits (Auth; C; R; U; P), where 

C is the counter value. Additionally, the digital 
signature is appended to preserve the message’s 
authenticity and integrity. 

Next, we present the steps of the other nodes for 
sharing the group key. 

1. The responder verifies whether it is included in 
the multicast group U. Subsequently, the digital 
signature and counter C are verified. 

2. If both are verified correctly, the responder 
computes ௝ܵ using the received random value R 
and the node's private key d୨: S୨ = d୨Q୧ + R . 

3. The responder converts the EC point S୨	to the 
point (u୨, v୨) using the same encoding as in Step 
4. 

4. The responder calculates the group key k: k = 
h(u఩ഥ ⊕ u୨ ⊕ v୨). 

5. The responder verifies whether 	Auth =h(k||R||P). If this is verified correctly, then the 
group key k is authenticated. 

Finally, we present the concluding step for 
sharing the group key: 

1. Each sensor node should send an 
acknowledgment message h(k, Q୨) to complete 
the handshake. 

2. By verifying the acknowledgment message, the 
initiator can ensure the authenticity of the 
particular group member and the accurate 
derivation of the group key k. 

 
 

2.3 SSKM 

To maintain the channel secure for delivering shares, 
the secret sharing-based key management (SSKM) 
scheme adopts a discrete logarithm in the finite field 
under the decisional Diffie–Hellman difficulty 
assumption.  

This scheme shares one cluster key (a group key) 
between the neighboring nodes. Below the detailed 
description of the scheme phases is presented. 
[Initial phase] 

Assume that ݉	− 1 clusters exist, and each cluster 
has a cluster head and n (n ≥ k) member nodes. In this 
phase, the BS sets the parameters for key sharing. 
This process is discussed systematically in 
subsequent paragraphs. 
Step 3-1:  

The BS chooses two large primes: 1݌ and 1ݍ; let ݌	 	ݍ and 1 + 1݌2 =  it is ;ݍ݌ = ܰ ,1 + 1ݍ2 =
computationally intractable to solve the factor N	
without ݌ and ݍ. Meanwhile, the BS selects a 
generator ݃ (݃ ∈[ܰ1/2,ܰ]) and another prime ܳ (ܳ > ܰ). Subsequently, it broadcasts the triple (ܰ, ݃, ܳ) to 
the sensors in the network. 
Step 3-2: 

The BS randomly and uniformly chooses a	
polynomial f(ݔ) of (k−1) degree for each cluster as 
follows: ݂(ݔ) = ݏ + ܽଵݔ + ܽଶݔଶ +⋯+ ܽ௞ିଵݔ௞ିଵ 

Step 3-3:  
The BS independently selects a session key ܭCH	

from GF(ܳ) in the finite field ܳ and encrypts the 
session key ZCH with the secret key ܵCH, namely, ZCH	
= KCH	+ SCH. 
[Cluster key management] 
Step 4-1:  

The cluster head (CH) chooses its own key xch 
randomly, which is relatively prime with p-1 and q-1, 
and sends it to the BS. Thereafter, the BS counts the 
yCH	= ݃xch and sends (IDCH, yCH) to a sensor node in 
the cluster; meanwhile, the sensor node selects a 
node’s private key xi randomly, which is relatively 
prime with p-1 and q-1, computes yi = ݃ xi mod N, and 
subsequently sends (Indi, yi) to the BS. The BS 
ensures that, if IDi ≠ IDj, yi = yj should not exist; 
otherwise, it reselects a node until it succeeds. 
Furthermore, the BS utilizes the CH's IDCH and the 
members' IDi (i = 1, ..., k) to count the shares fCH 
(IDCH) and fCH (IDi). 
Step 4-2:  

The CH selects a group of users ܸ݈ = {ID1,…, 
IDk}, while the BS unicasts (IDCH,	fCH(IDCH)･(yi)xch	

Efficient Geometric Group Key-sharing Scheme

211



 

 

mod	N)	to	a	sensor	node	in	the	cluster	and	sends	(IDi,	fCH(IDi)･(yCH)xi	mod	ܰ)	to	the	CH.	
Step 4-3: 

The BS informs ZCH not to share the KCH. 
[Secret recovery] 

Depending on the received information from the 
BS, e.g., the public generator, a node’s private key ݔ, 
and the CH’s own key ݔCH, the CH and members can 
obtain their shares through the following formulas: ௙಴ಹ(ூ஽಴ಹ)(௬೔)ೣ಴ಹ(௬಴ಹ)ೣ೔ = ஼݂ு(ܦܫ஼ு)             (1) 

௙಴ಹ(ூ஽೔)(௬಴ಹ)ೣ೔(௬೔)ೣ಴ಹ = ஼݂ு(ܦܫ௜)                (2) 

2.4 Hamasaki et al. Scheme 

In this scheme, all nodes share the group key through 
a BS. First, the steps executed by the BS to perform 
the group key sharing are discussed. All nodes store 
each own unique key and the BS knows all unique 
keys. The BS and all nodes keys are calculated with 
GF(p). The process is described in detail below: 

1. The BS generates a pseudorandom number r, 
and the number r is shared with all nodes in the 
group n. 

2. The BS generates a pseudorandom number 
based on each node’s unique key and a random 
number r to set node’s coordinates in n-1 
dimensions ai (ai1, ai2, ai3,‥, ai(n-1)). 

3. If all node coordinates are set in n-2 dimensions, 
the BS returns to step 1. 

4. The BS calculates the coordinates of the center 
of the circle using the coordinates of all nodes. 

5. The BS broadcasts r, n and the coordinates of 
the center of the circle. 

Next, the steps of sharing the group key for a node 
i are presented: 

1. The node i calculates a pseudorandom number 
ai (ai1, ai2, ai3,‥ , ai(n-1)) based on a random 
number r and a node’s unique key.  

2. The node i calculates the distance from the 
received center of the circle to its own node 
coordinates using equation (3) presented below. 
However, we do not perform the square root 
operation because of its lower computational 
cost. ܵ = ଵ݋) − ܽ௜ଵ)ଶ + ଶ݋) − ܽ௜ଶ)ଶ + ⋯+ ൫݋௡ିଵ − ܽ௜(௡ିଵ)൯ଶ 

(3)

3 PROPOSED SCHEME 

We propose an efficient geometric group key-sharing 
scheme based on the Hamasaki et al. scheme. 

3.1 Efficient Hamasaki et al. Scheme 

The Hamasaki et al. scheme incurs a high 
computational cost if there are many nodes in a group 
because n-1 times generating pseudorandom number 
is required (n is the number of nodes in the group). 
Because the result of equation (3) is a group key, the 
bit length of p includes the group key size. Therefore, 
the length of the pseudorandom number is 128 bits 
when the key size is 128 bits; therefore, the random 
number can be generated by encryption in that the bit 
length is 128 bits, for example, AES, etc. If 1,000 
nodes are in the group, a 999-times encryption is 
required to share the group key in this method; 
therefore, the computational cost becomes high. 

A large number of nodes causes this problem. The 
group is divided into clusters of three nodes each to 
decrease the number of nodes n. A cluster key is 
generated in each cluster by the Hamasaki et al. 
scheme, and a group key is sent to every cluster with 
the cluster key. We present the operation to share the 
group key. First, we present the BS steps. All nodes 
store each unique key and the BS knows all unique 
keys and IDs. The description of the scheme steps is 
provided below: 
1. The BS divides the IDs of nodes in the group 

into clusters cj (j = 1, 2, 3, ..., m) of three nodes 
in ascending order. 

2. The BS generates a random number r, and 
calculates each node coordinates ai(aix, aiy) 
based on the random number r and each unique 
key using pseudorandom number generator. 

3. The BS calculates the center of the circle Oj(Ojx, 
Ojy) of each cluster with the Hamasaki et al. 
scheme. 

4. The BS calculates the radius for cluster key sj in 
each cluster by equation (4). ݏ௝ = ൫݋௝௫ − ܽ௜௫൯ଶ + ൫݋௝௬ − ܽ௜௬൯ଶ	          (4) 

5. The BS generates group key S and encrypts 
group key S with cluster key sj into gj. 

6. The BS broadcasts the following information. 
cIDj is the smallest ID in cluster cj. 

r, (cIDj, Oj(Ojx,Ojy), gj) (j = 1,2,3,‥,m) 

Next, we present the steps for a node i. 
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1. If its node IDi
 is in the received cIDj～cIDj+1, its 

cluster is cj. 
2. The node i calculates pseudorandom number 

ai(aix,aiy) based on random number r and its own 
unique key. 

3. The node i calculates the distance from the 
received center of circle Oj to its own node 
coordinate ai by equation (4). 

4. The node i decrypts gj by sj to obtain group key 
S. 

4 EVALUATION 

The proposed scheme is compared with the 
conventional methods discussed in Section 2 based on 
the five factors presented in Section 1. The results of 
comparison are presented considering computational 
cost, communication cost, and storage requirement, 
the performance evaluation process is described in 
detail in Section 4.1. We present the results of the 
evaluation based on key renewal and security as 
outlined in Section 4.2. 

4.1 Performance Evaluation 

The performance indicators in terms of computational 
cost, communication cost, and storage requirement 
for each node are evaluated for all considered 
schemes. Table 1 lists the order for all used indicators 
and schemes. The BS performance is not evaluated 
because a BS must be tamper-resistant and include 
sufficient computational ability and power supply 
capacity.  

To perform a simple evaluation, we set the length 
of constants such as counter value, random value, and 
ID of a node or a key, equal to L1; the length of data 
that are encoded by a common key cryptosystem, 
hash, or ECC operations to L2; and the length of data 
that are processed by a discrete logarithm to L3. 
Generally, L1 < L2 << L3.  

For computational cost, we set the computational 
complexity of addition and multiplication equal to 
C1; that of using a common key cryptosystem, hash, 
pseudorandom number generation, and simultaneous 
equation processing including the secret-sharing 
scheme to C2; and that of ECC operation and the 
discrete logarithm to C3. Generally, C1<C2<<C3. 

Meanwhile, LEAP, ECCKS, and SSKM have an 
initiator. However, Hamasaki et al.’s scheme and the 
proposed scheme do not have one. It is possible to 
assume an initiator for Hamasaki et al.’s scheme and 
for the proposed scheme to keep the settings of nodes 
in the group consistent (SSKM has a BS as well). 

Therefore, a group consists of one initiator and m 
peripheral nodes. In this case, each peripheral node 
sends its own ID to the initiator. 

Table 1: Comparison of results. 

 (a) (b) (c) (d) (e) 

(1) mL2 m2L2 L2 mL1 mL1 

(2) L1 L1 L3 L1 L1 

(3) 2mC2 mC3 C3 mC2 2C2 

(4) 3C2 C3 2C3 mC2 2C2 

(5) L2 L2 L2 L2 L2 

(a) LEAP 
(b) ECCKS 
(c) SSKM 
(d) Hamasaki et al. scheme 
(e) Proposed scheme 
(1) Communication cost (initiator) 
(2) Communication cost (peripheral node) 
(3) Computational cost (initiator) 
(4) Computational cost (peripheral node) 
(5) Storage requirement 

LEAP shares a group key (cluster key) using 
pairwise keys. Therefore, during the pairwise key-
sharing phase, the initiator needs the communication 
cost of mL1 to send its own ID to each node, then the 
peripheral nodes send their own ID to the initiator, 
whereas the group key-sharing phase requires that of 
m(L1+L2) ≒mL2 for the initiator as it has to transmit 
the node ID and enciphered key.  

In LEAP, the initiator performs one encryption for 
its own ID, and one encryption for every node ID in 
the pairwise key sharing. In addition, the initiator 
performs m encryption for the peripheral nodes. 
Therefore, the initiator requires the computational 
cost of (1+2m)C2≒2mC2, and each peripheral node 
performs two encryptions and one decryption for 
pairwise and group key-sharing. Therefore, that of 
peripheral node is 3C2. 

ECCKSS uses an ECC-based operation. The 
initiator transmits (Auth; C; R; U; P) for each node. 
Therefore, it requires the communication cost of 
m{(m + 1)(L1 + L2) + L2} ≒ m2L2. The 
communication cost required by the digital signature 
and Ack was not included in this evaluation as these 
objects are used for verification.  

In ECCKSS, each node performs an ECC 
operation for ௝ܵ , a hash for ݑ௝  and ݒ௝ , and two 
additions to calculate the group key. Considering the 
initiator, processing the ECC operation for ܴ  and 
addition for ݑఫഥ  and ݇ are added. Therefore, each node 
requires the computational cost of almost C3 + 2C2 
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+ 2C1 ≒ C3, and the initiator requires the 
computational cost of almost mC3. 

SSKM applies a discrete logarithm. The initiator 
sends xch to the BS. A peripheral node sends (IDi, yi) 
to the BS. yCH and yi are extremely large numbers. 
Therefore, the communication cost of the initiator is 
L2 and that of each peripheral node is almost L3. 

In SSKM, the nodes except the initiator calculate 
yi = ݃xi mod N and equation (1) to obtain a share. The 
nodes solve a simultaneous equation processing to 
obtain the group key. Therefore, each node requires 
the computational cost of almost 2C3+C2≒2C3 and 
the initiator requires that of almost C3+C2≒C3. 

Hamasaki et al.’s scheme performs calculations to 
obtain the center of a circle by the BS. Therefore, each 
peripheral node sends its own ID to the initiator, and 
the initiator sends the IDs of the peripheral nodes to 
the BS. Each node receives the coordinate of the 
center of the circle from the BS. Therefore, the 
initiator requires the communication cost of mL1, and 
each peripheral node requires that of L1. 

In Hamasaki et al.’s scheme, each node generates 
m pseudorandom numbers and calculates S using 
addition and multiplication. Therefore, each node 
requires mC2+C1≒mC2. 

The scheme proposed in this paper forms multiple 
clusters, which allows keeping m as a relatively small 
number. The communication cost for each node is the 
same as that of Hamasaki et al.’s method. However, 
the computational cost of the proposed scheme is the 
smallest comparing to other consider methods, 
because m is maintained small. Therefore, each node 
requires the computational cost of 2C2+C1≒2C2. 

5 APPLICATION EXAMPLE 

The proposed scheme is characterized by easy group 
key update. Therefore, we can present applications 
where only authorized people can receive service in 
unpartitioned space. To build an analogy, let us 
consider a hypothetical room where people who have 
a communication device frequency enter and exit. 
However, it is not necessary for a room to be 
surrounded by a wall, which would cut off 
communication. Let us consider that a service, which 
is operated in the room is e-sports, established such 
as only authorized people sharing a common group 
key can use it. The game of e-sports is projected to a 
big screen in the room, and only the people in the 
room can share the information. When a person exits 
the room, the group key is immediately updated to 
remove that person from the group. Therefore, he 

loses access to the service at the moment when he 
leaves the room. Subsequently, when someone enters 
the room, the group key is updated to include this new 
person and he can obtain access to the service. 
Therefore, it is easy to respond to services that are 
frequently updated by participants using the proposed 
scheme. 

6 CONCLUSION 

We proposed an efficient key-sharing scheme, which 
implies dividing into clusters to decrease 
computational cost. In future work, we would like to 
consider pairwise key sharing, and propose a method 
using pairwise key sharing and group key sharing. 
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